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Abstract. Lane detection and tracking is a significant component of
vision-based driver assistance systems (DAS). Low-level image process-
ing is the first step in such a component. This paper suggests three
useful techniques for low-level image processing in lane detection situa-
tions: bird’s-eye view mapping, a specialized edge detection method, and
distance transform. The first two techniques have been widely used in
DAS, while distance transform is a method newly exploited in DAS that
can provide useful information in lane detection situations. This paper
recalls two methods to generate a bird’s-eye image from the original in-
put image, compares specialized edge detectors and other normal edge
operators. A modified version of the Euclidean distance transform called
real orientation distance transform (RODT) is put-forward. Finally, the
paper discusses experiments on lane detection and tracking using these
technologies.
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1 Introduction

Lane detection plays a significant role in driver assistance systems (DAS), as
it can help to estimate the geometry of the road ahead, as well as the lateral
position of the ego-vehicle on the road [9]. Lane detection is used in intelligent
cruise control systems, for lane departure warning, road modeling, and so on.
Typically, lane detection and tracking are used for localizing lane boundaries in
given road images. In general, a procedure for lane detection includes low-level
image processing as pre-processing, lane boundary detection, and some post-
processing

The first step in lane detection is low-level image processing (LLIP), which
deals with the input image [from the camera(s) installed on the ego-vehicle] and
generates useful information for the detection part.

For edge-based lane detection, three relative stages are to be considered in
LLIP. First, a transformation of the input image: Lane detection has been con-
ducted to a large extent directly on the input image; however, a proper trans-
formation (e.g., a homographic transform) of the input image prior to further
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analysis will facilitate and improve the accuracy of lane detection. Second, an
edge detection method: Though all-purpose edge operators (e.g., Sobel, Canny,
Kovesi-Owens [1]) are also applied for lane detection, some specially designed
operators will fit better to the properties of lane marks, which are to be detected.
Third, some other operations on the edge map: This will be discussed below.

A complete LLIP will not always include these three stages according to
various lane detection situations and applied methods. This paper will discuss
three useful technologies that can be applied as LLIP in lane detection and
tracking. Bird’s-eye view mapping has been widely used in lane detection [2,
6, 7, 10] and robot navigation [5] as it can provide a top-down view through
a homographic transform. A specialized edge detector as introduced in [2] is
recalled, and compared with other gradient-based edge operators. Further, this
paper fully exploits the advantages of distance transforms for lane detection as
a powerful way to represent relevant information.

This work is organized as follows: Section 2 discusses bird’s-eye view mapping,
and provides two methods for such a transformation. Section 3 describes an edge
detection method. Section 4 recalls distance transform and discusses its useful
properties for lane detection. Experimental results of lane detection and tracking
are presented in Section 5 using LLIP technologies as introduced in this paper.

2 Bird’s-eye view mapping

Generally, detecting lanes directly on the input image will waste no time over
transforming the input image into some other space. However, as introduced in
[2], at least two disadvantages will come with apparent perspective effects: non-
constant lane mark width, and different distances (see Fig. 1). A removal of such
perspective effects will greatly facilitate lane detection. The main function of a
bird’s-eye view mapping is that a remapped image represents a (scaled) view
from the top towards an assumed planar ground manifold. From this remapped
view, perspective effects are approximately removed (i.e., approximate with re-
spect to the assumed planarity). Two methods are briefly reviewed here to gen-
erate a bird’s-eye image from the input image.

2.1 Warp perspective mapping

As in [7], a four-points correspondence can be used for the mapping from the
input image into the bird’s-eye image. The mapping is achieved by selecting four
points PW on the ground plane when calibrating the ego-vehicle’s camera(s), and
by using the planar ground manifold assumption. PW in the input image will be
viewed as PI . The mapping from PI to PW can be achieved by an affine matrix
A as follows:

PW = A · PI
The calculation of A using the above equation can be easily achieved. Then, the
whole input image can be mapped, pixel-by-pixel, using A. One main benefit of
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this warp perspective mapping (WPM) is that the used distance scale can be ad-
justed by selecting different sets of four corresponding points (i.e., by scaling the
“length” of the rectangle). This proved to be useful for detecting discontinuous
lane markers as well as for further forward looking situations. Another benefit
is that no intrinsic or extrinsic parameters of camera(s) are needed.

2.2 Inverse perspective mapping

Inverse perspective mapping (IPM) as introduced in [8] is another way to gen-
erate a bird’s-eye view from the input image [2, 3, 10]. The knowledge of the
camera parameters (extrinsic and intrinsic) is required for the application of the
IPM transform:

Viewpoint: camera position in world coordinate system C = (l, h, d).
Viewing direction: optical axis is defined by two angles:
γ0: the angle formed by the projection of the optical axis on the xz plane
[as shown in Fig. 3(a)],
θ0: the angle formed by the optical axis and axis η [as shown in Fig. 3(b)].

Aperture: camera angular aperture is 2αu in row direction and 2αv in column
direction. While [note that (u0, v0) is the camera’s focal center, and F is focal
length]:
αu = arctan{u0/F},
αv = arctan{v0/F}.

Resolution: camera resolution is n×m.

Mathematically, IPM can be modeled as a projection from a 3D Euclidean
space W, containing elements (x, y, z) ∈ R3, onto a planar (2D) subspace of R3,
denoted by I, with elements (u, v) ∈ R2. The mapping from I to W is as follows,

x(u, v) = h · cot{(θ0 − αu) + u
2αu
m− 1

} · cos{(γ0 − αv) + v
2αv
n− 1

+ l}

y(u, v) = 0

z(u, v) = h · cot{(θ0 − αu) + u
2αu
m− 1

} · sin{(γ0 − αv) + v
2αv
n− 1

+ d}

y

(a) (b)

z

Fig. 1. Perspective effects in the original input image. (a) Non-constant lane mark
width. (b) Variation of distances to different pixels.
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Fig. 2. (a) Input Image. (b) and (c) are bird’s-eye images using a WPM but based
on different distance definitions. Four-point correspondence (points shown in yellow)
is established by calibration; the driving direction is indicated by the arrow.

x

z y

(c) (d)

Fig. 3. The model of IPM. (a) The xz plane in space W . (b) The yη plane.

while we have the following mapping from W to I:

u(x, 0, z) =
[arctan{h sin γ(x,0,z)

z−d } − (θ0 − αu)] · (m− 1)
2αu

v(x, 0, z) =
[arctan{ z−dx−l } − (γ0 − αv)] · (n− 1)

2αv

An example of bird’s-eye view using the above two methods is shown in Fig. 4.
Both of them are using the planar ground plane assumption, and parameters
from calibration. However, there are some difference between these two methods.
First, WPM will not directly use camera’s intrinsic or extrinsic parameters as
IPM does. That means the calibration will be much easier for WPM. Second,
changing a bird’s-eye view generated from WPM means selecting another set of
four points, while for IPM, the parameters of the camera need to be changed.
Also, the quality of the generated bird’s-eye views is different, which can be seen
in the small (also enlarged) window in Fig. 4.



New Lane Model and Distance Transform 5

(a) (b) (c)

Fig. 4. Bird’s-eye view using warp perspective mapping and inverse perspective map-
ping. (a) The original input image. (b) Bird’s-eye view using WPM. (c) Bird’s-eye view
using IPM.

3 Edge detection and denoising

We recall an edge detection method as introduced in [2]. Black-white-black edges
in vertical direction are detected in the bird’s-eye image by a specially designed
simple algorithm. Every pixel in the bird’s-eye image, with value b(x, y), is com-
pared to values b(x−m, y) and b(x+m, y) of its horizontal left and right neighbors
at a distance m ≥ 1 as follows:

B+m(x, y) = b(x, y)− b(x+m, y)
B−m(x, y) = b(x, y)− b(x−m, y)

Finally, using a threshold T , the edge map value will be

r(x, y) =
{

1, if B+m≥ 0, B−m≥ 0, and B+m +B−m≥ T
0, otherwise

This edge detection method has the following properties. First, m can be
adjusted to fit various widths of lane marks. Second, pixels within a lane mark
are all labeled as being edge pixels, which is different from gradient-based edge
operators (e.g., Sobel, Canny). This greatly improves the robustness in detecting
points at lane marks. Third, shadows on the road surface do not influence edge
detection at lane marks. Thus, the edge detection method can be used under
various illumination conditions. Finally, horizontal edges are not detected. For
an example of edge detection, see Figure 5.

(a) (b) (c)

Fig. 5. Edge detection. (a) Bird’s-eye image. (b) Edge detection using the Canny
operator. (c) Edge detection following [2].
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Fig. 6. Detection of the isolated blobs in the binarized edge map. Inner window and
outer window move at the same time through the edge map. When the gap between
the inner and outer window contains no edge, an isolated blob is detected in the inner
window.

The edge detection scheme as discussed above may generate some isolated
small blobs (including single pixels) besides edges of real lane marks. These
noisy blobs will greatly affect the result of the subsequent distance transform
(see Fig. 7; the distance transform is discussed in Section 4). In order to remove
such noise, a specified operation is applied. The general idea is first to find such
isolated blobs, and then set them to zero (i.e., to the non-edge value). Two small
windows (inner and outer) are used (see Fig. 6) at the same reference pixel, but
the outer window is slightly larger than the inner one in width and height. The
isolated blobs can be detected by moving at the same time these two windows
through the whole edge map, and comparing the sums of edge values within
them. If two sums are equal, that means that the gap between two windows
contains no edge points, then the edge blobs in the inner window are detected
as being isolated, and set to zero. For computation efficiency, an integral image
of the edge map is used for calculating the sum in the windows.

(b)

(d)(c)

(a)

Fig. 7. Effect of an isolated noisy pixel in the edge map for distance transform. (a)
Noisy edge map with an isolated edge point in the middle of the lane. (b) Denoised
edge map. (c) RODT based on (a). (d) RODT based on (b).
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4 Distance Transform

The distance transform applied to the binary edge map labels each pixel with the
distance to the nearest edge pixel (see [11] for details). Edge pixels are obviously
labeled by 0, and this is shown as black in the generated distance map. Pixels
“in the middle of a lane” are supposed to receive large labels, shown as bright
pixels in the distance map (see Figure 8).

The Euclidean distance transform (EDT) is in general the preferred option,
using the Euclidean metric for measuring the distance between pixels. [4] proved
that a 2D EDT can be calculated by two 1D EDTs, and this greatly improves
the computation efficiency. A modified EDT was proposed in [12], called ori-
entation distance transform (ODT). This divides the Euclidean distance into a
contributing component in row and column direction. (Note that the use of a
4- or 8-distance transform would not lead to the same row and column compo-
nents; however, practically there should be not a big difference with respect to
the given context.) A complex number is assigned to each pixel by the ODT, with
the distance component in row direction as real part, and distance component
in column direction as imaginary part. Then the magnitude and the phase angle
of such a complex number at a non-edge pixel represent the Euclidean distance
and the orientation to the nearest edge pixel, respectively. Note that distance
component in row direction is signed, with a positive value indicating that the
nearest edge point lies to the right, and a negative value if it is to the left. See
Figure 8 for an example. The imaginary part is mostly dark because nearest
edge pixels are in general in the same row, due to the applied edge detection
method. Thus, we decided to ignore the imaginary part.

This paper uses only the Euclidean distance in row direction, and we call this
the real orientation distance transform (RODT). The RODT of our edge map
offers various benefits. First, every pixel indicates the nearest edge pixel, which
will greatly facilitate edge-finding procedure. Second, discontinuous lane marks

(a) (b) (c)

(d) (e)

Fig. 8. EDT and ODT on a bird’s-eye road image. (a) Bird’s-eye road image. (b)
Binary edge map (the area in the rectangle is a discontinuous lane mark). (c) EDT. (d)
Real part of ODT (absolute value). (e) Imaginary part of ODT. (c)(d)(e) have been
contrast adjusted for better visibility.
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Fig. 9. (a) The test vehicle ‘High Awareness Kinematic Automobile 1’ (HAKA1). (b)
A stereo camera pair on a bar behind the windscreen.

will make almost no difference with continuous ones in the RODT (and this is
different to the EDT of the edge map), as illustrated in Figure 8. Third, more
information about the lane is provided by the distance transform compared with
the edge map. For example, there’s nothing provided by the edge map for the
(virtual ) centerline of a lane. While in distance map, pixels on the centerline
will be assigned a large distance value.

The distance transform is sensitive to some isolated points or blobs in lane
detection situation. As indicated in Fig. 7, an edge point on the middle of lane
will greatly change the distance value for the surrounding pixels. So a denoising
method on the edge map as introduced in Section 3 is necessary, and proves to
be useful.

(a) (b) (c)

Fig. 10. Experimental results for lane detection. (a) Input images. (b) Lanes detected
in the bird’s-eye image. Note that red lines are the centerlines of a lane. (c) Lanes
detected in input images.
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5 Experiments

Experimental results (using the test vehicle HAKA1; see Fig. 9) for lane detection
(see [13]) are shown in Fig. 10, and for lane tracking in Fig. 11. The size of used
images is 752× 480, recorded at 25 Hz.

The usefulness of distance transform can be seen from examples in Fig. 12.
Lane marks are invisible in these two situations, but the distance map provides
sufficient information for identifying the lane boundaries.

frame 0 frame 10 frame 20 frame 50

Fig. 11. Experimental results for using the robust lane tracking technique.

(a) (b) (c) (d)

Fig. 12. Two examples of usefulness of RODT in detection of lane boundary. (a) The
input image. (b) The edge map. Note that the edges in the left boundary is far from
perfect.(c) RODT of (b). The left boundary (in black) and the centerline (in white)
are clear. (d) Lane detection result. one.
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