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Abstract. Robust stereo and optical flow disparity matching is essential for
computer vision applications with varying illumination conditions. Most robust
disparity matching algorithms rely on computationally expensive normalized
variants of the brightness constancy assumption to compute the matching
criterion. In this paper, we reinvestigate the removal of global and large area
illumination artifacts, such as vignetting, camera gain, and shading reflections,
by directly modifying the input images. We show that this significantly
reduces violations of the brightness constancy assumption, while maintaining the
information content in the images. In particular, we define metrics and perform a
methodical evaluation to firstly identify the loss of information in the images, and
secondly determine the reduction of brightness constancy violations. Thirdly, we
experimentally validate that modifying the input images yields robustness against
illumination artifacts for optical flow disparity matching.

1 Introduction

Previous studies have shown that when using correspondence algorithms (i.e., stereo
and optical flow) to provide reliable information, the results on synthetically generated
data (e.g., [12]) do not compare well with results on realistic images [18]. Further
studies have shown that illumination artifacts (such as shadows, reflections, and
vignetting) and differing exposures have the worst effect on the matching [14]. This
effect is especially highlighted in driver assistance systems (DAS), where illumination
can change drastically in a short amount of time (e.g., going through a tunnel, or the
“dancing light” from sunlight through trees).

For dealing with illumination artifacts, there are three basic approaches:
simultaneously estimate the disparity matching and model brightness change within the
disparity estimation [7], try to map both images into a uniform illumination model,
or map the intensity images into images which carry the illumination-independent
information (e.g., using colour images [11, 20]).

Using the first option, only reflection artifacts can be modelled without major
computational expense. From experiments with various unifying mappings, the second
option is basically impossible (or, at least, a very big challenge). The third approach has
more merit for research; we restrain our study to using the more common grey value
images.

An example of mapping intensity images into illumination-independent images is
the structure-texture image decomposition [2, 15] (an example can be seen in Figure 1).



Fig. 1. Example for removing illumination artifacts due to different camera exposure in the Art
image (left) by using its residual component (2nd from left). The brightness difference between
the plain intensity images (3rd from left) shows laminar errors. The brightness difference of the
residual images (right) contains spatially distributed noise but no large area illumination artifacts.

More formally, this is the concept of residuals [9], which is the difference between
an intensity image and a smoothed version of itself. A subset of residual operators
has been recently evaluated together with different matching costs in the context of
stereo disparity matching in [8]. In this paper we systematically evaluate and compare
residual operators as basic approach for preprocessing corresponding images, to reduce
the effect of illumination variances.

The methodology is based on first showing that information is not lost by applying
the filter, using co-occurrence matrix [6] based measures. We then show the effect on
the corresponding images (using ground truth correspondence data), comparing the
differences in illumination, and summarise this information with an error metric. We
go on to show that they remove illumination artifacts using a mixture of synthetic and
real-life images [5, 12]. The illumination effects are highlighted more drastically when
the illumination and exposure conditions of the corresponding images are not the same.
The chosen filters are the TV-L2 [15], median, mean, sigma [10], bilateral [17], and
trilateral filter [4]. All are effectively “edge preserving” filters, except the mean filter.



2 Methodology

Here we define the methodology of our process. It is defined by two parts; firstly,
identifying if the images loose information, and secondly, determining reduction of
the effect of illumination artifacts.

2.1 Co-occurrence Matrix and Metrics

The co-occurrence matrix has been defined for analysing different metrics about the
texture of an image [6]:

C(i, j) =
∑
x∈Ω

∑
a∈N\{(0,0)}

{
1, if h(x) = i and h(x + a) = j
0, otherwise (1)

whereN +x is the neighbourhood of pixel x, a 6= (0, 0) is one of the offsets inN , and
0 ≤ i, j ≤ Imax, for maximum intensity Imax. h represents any 2D image (e.g., f ). All
images are scaled min↔ max for utilizing the full 0↔ Imax scale.

In our experiments we chose N to be the 4-neighbourhood, and we have Imax =
255. The loss in information is identified by the following metrics:

Homogeneity: Thomo(h) =
∑
i j

C(i, j)
1 + |i− j|

(2)

Uniformity: Tuni(h) =
∑
i j

C(i, j)2 (3)

Entropy: Tent(h) = −
∑
i j

C(i, j) lnC(i, j) (4)

An increase in homogeneity represents the image having more homogeneous
areas, an increase in uniformity represents more uniform areas, and a decrease in
entropy shows that there is less information contained in the image. To get a better
representation of the effect of filters, we scale the result by the original image’s metric,
i.e., T∗(h)/ |T∗(f)|, where h is the processed image (obviously, h = f gives a value
of 1). Results using these metrics on the smoothed images and residual images can be
seen in Section 5.

2.2 Testing Illumination Artifact Reduction

Correspondence algorithms usually rely on the brightness consistency assumption, i.e.,
that the appearance of an object (according to illumination) does not change between
the corresponding images. However, this does not hold true when using real-world
images, this is due to, for example, shadows, reflections, differing exposures and sensor
noise. It is well known, that illumination artifacts propose the biggest problem for
correspondence algorithms; a recent study has shown that illumination artifacts may,
in fact, be the worse type of errors [14]. Figure 2 shows our proposed approach for
evaluating the effectiveness of a filter. In this paper, we choose the filtering operator H
to be the residual image (H = R).
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Fig. 2. Outline of the methodology used to obtain an error image. For our study H = R.

2.3 Image Warping

One way to highlight this (i.e., that the errors from residual images are lower than the
errors obtained using the original images) is to warp one image to the perspective of the
other (using ground truth) and compare the differences. The forward warping function
W is defined by the following:

W
(
h1(x),u∗(x, h1, h2)

)
= w

(
x + u∗(x, h1, h2)

)
,

where h(x) is the image value at x ∈ Ω, and u∗ is the 2D ground truth warping
(remapping) vector from h1 to the perspective of h2. In practice, the warping is
performed using a lookup table with interpolation (e.g., bilinear or cubic). In the stereo
case, u∗ is the ground truth disparity map from left to right (all vertical translations
would be zero). Another common example is optical flow, where u∗ is the ground truth
flow field from the previous to the current frame.

2.4 Image Scaling

For the purposes of this paper, h is discrete in the functional inputs (x), but continuous
for the value of h itself. For a typical grey-scale image, the information is discrete
(0 ≤ h ≤ 2n − 1 ∈ N2, where n is usually 8 or 16). However, we find it easier
to represent image data continuously by −1 ≤ h ≤ 1 ∈ Q2, which takes away the
ambiguity for the bits per pixel (as any n-bits per pixel image can be scaled to this
domain). We scale all images to this domain using h(x) = h(x)/maxx∈Ω |h(x)|.

2.5 Error Images and Metrics

An error image e is the magnitude of difference between two images, E(h, h∗) =
e(x) = ‖h(x)− h∗(x) ‖, where, usually, h is the result of a process and h∗ is the
ground truth. For this paper, the error image is between h∗ = h2 and the warped image
h = W (h1).

A common error metric is the Root Mean Squared (RMS) Error. The problem with
this metric is that it gives an even weighting to all pixels, no matter the proximity to
other errors. In practice, if errors are happening in the same proximity, this is much
worse than if the errors are randomly placed over an image. Most algorithms can handle
(by denoising or such approaches) small amounts of error, but if the error is all in
the same area, this is seen as signal. We define the Spatial Root Mean Squared Error



(Spatial-RMS) to take the spatial properties of the error into account:

RMSS(e) =

√
1
M

∑
x∈Ω

(
G
(
e(x)

)2)
(5)

M is the number of pixels in the (discrete) non-occluded (when occlusion maps are
available) image domain Ω, and G is a function that propagates the errors in a local
neighbourhood N . For our experiments, we chose a Gaussian error propagation using
a standard deviation σ = 1.

3 Smoothing Operators and Residuals

Let f be any frame of a given image sequence (or stereo camera setup), defined on a
rectangular open set Ω and sampled at regular grid points within Ω.

f can be defined to have an additive decomposition f(x) = s(x)+r(x), for all pixel
positions x = (x, y), where s = S(f) denotes the smooth component (of an image) and
r = R(f) = f − S(f) the residual (Figure 1 shows an example of the decomposition).
We use the straightforward iteration scheme:

s(0) = f, s(n+1) = S(s(n)), r(n+1) = f − s(n+1), for n ≥ 0.

The concept of residual images was already introduced in [9] by using a 3× 3 mean for
implementing S. We use the m×m mean operator and also an m×m median operator
in this study. The other operators for S are defined below.

3.1 TV-L2 filter

[15] assumed an additive decomposition f = s + r into a smooth component s and
a residual component r, where s is assumed to be in L1(Ω) with bounded TV (in
brief: s ∈ BV), and r is in L2(Ω). This allows one to consider the minimization of the
following functional:

inf
(s,r)∈BV×L2∧f=s+r

(∫
Ω

|∇s|+ λ||r||2L2

)
(6)

The TV-L2 approach in [15] was approximating this minimum numerically for
identifying the “desired clean image” s and “additive noise” r. Further studies (see [2])
identified s to be the “structure”, and r to be the “texture”. See Figure 1. The concept
may be generalized as follows: any smoothing operator S generates a smoothed image
s = S(f) and a residuum r = f − S(f). For example, TV-L2 generates the smoothed
image s = STV (f) by solving Equ. (6).

3.2 Sigma filter

This operator [10] is effectively a trimmed mean filter; it uses an m ×m window, but
only calculates the mean for all pixels with values in [a − σf , a + σf ], where a is the
central pixel value and σf is a threshold. We chose σf to be the standard deviation of f
(to reduce parameters for the filter).



3.3 Bilateral filter

This edge-preserving Gaussian filter [17] is used in the spatial domain (using σ2 as
spatial σ), also considering changes in the colour domain (e.g., object boundaries). In
this case, offset vectors a and position-dependent real weights d1(a) define a local
convolution, and the weights d1(a) are further scaled by a second weight function d2,
defined on the differences f(x + a)− f(x):

s(x) =
1

k(x)

∫
Ω

f(x + a) · d1(a) · d2 [f(x + a)− f(x)] da (7)

k(x) =
∫
Ω

d1(a) · d2 [f(x + a)− f(x)] da

Function k(x) is used for normalization. In this paper, weights d1 and d2 are defined
by Gaussian functions with standard deviations σ1 and σ2, respectively. The smoothed
function s equals SBL(f). It therefore only takes into consideration values within a
Gaussian kernel (σ2 for spatial domain, f for kernel size) within the colour domain (σ1

as colour σ).

3.4 Trilateral filter

This gradient-preserving smoothing operator [4] (i.e., it uses the local gradient plane
to smooth the image) only requires the specification of one parameter σ1, which is
equivalent to the spatial kernel size. The rest of the parameters are self tuning.

It combines two bilateral filters to produce this effect. At first, a bilateral filter is
applied on the derivatives of f (i.e., the gradients):

gf (x) =
1

k∇(x)

∫
Ω

∇f(x + a) · d1(a) · d2 (||∇f(x + a)−∇f(x)||) da (8)

k∇(x) =
∫
Ω

d1(a) · d2 (||∇f(x + a)−∇f(x)||) da

Simple forward differences∇f(x, y) ≈ (f(x+1, y)−f(x, y), f(x, y+1)−f(x, y)) are
used for the digital image. For the subsequent second bilateral filter, [4] suggested the
use of the smoothed gradient gf (x) [instead of∇f(x)] for estimating an approximating
plane pf (x,a) = f(x) + gf (x) · a Let f4(x,a) = f(x + a)− pf (x,a). Furthermore,
a neighbourhood function

n(x,a) =
{

1 if ||gf (x + a)− gf (x)|| < A
0 otherwise (9)

is used for the second weighting.A specifies the adaptive region and is discussed further
below. Finally,

s(x) = f(x) +
1

k4(x)

∫
Ω

f4(x,a) · d1(a) · d2(f4(x,a)) · n(x,a) da (10)

k4(x) =
∫
Ω

d1(a) · d2(f4(x,a)) · n(x,a) da



The smoothed function s equals STL(f). Again, d1 and d2 are assumed to be Gaussian
functions, with standard deviations σ1 and σ2, respectively. The method requires
specification of parameter σ1 only, which is at first used to be the radius of circular
neighbourhoods at x in f ; let gf (x) be the mean gradient of f in such a neighbourhood.
Let

σ2 = 0.15 · ||max
x∈Ω

gf (x)−min
x∈Ω

gf (x)|| (11)

(Value 0.15 was recommended in [4]). Finally, also use A = σ2.

3.5 Numerical Implementation

All filters have been implemented in OpenCV, where possible the native function was
used. For the TV-L2, we use an implementation (with identical parameters) as in [19].
All other filters used are virtually parameterless (except a window size) and we use a
window size of m = 3 (σ1 = 3 for trilateral filter3). For the bilateral filter, we use
color standard deviation σ1 = Ir/10, where Ir is the range of the intensity values (i.e.,
σ1 = 0.2 for the scaled images).

4 Datasets

We illustrate our arguments with the Middlebury dataset [12] and the EISATS [5]
synthetic data (Set 2).

4.1 Middlebury Stereo Dataset

This highlights the major importance of removing illumination artifacts. For the
Middlebury dataset we include both the2005 and 2006 datasets (provided by [8,
16]). This data has 3 different exposures and 3 different illuminations (for both the
left and right images). This enables us to test the brightness consistency assumption
under extreme conditions. Again, we only use images with ground truth available.
For the 2005 set, that includes: Art (see Figure 1), Books, Dolls, Laundry, Moebius,
and Reindeer. For the 2006 set: Aloe, Baby1-3, Bowling1-2, Cloth1-4, Flowerpots,
Lampshade1-2, Midd1-2, Monopoly, Plastic, Rocks1-2, and Wood1-2. We are not
interested in “good quality” situations. Therefore, we only use images with differing
exposure and illumination. To do this, for each image pair, we keep the left image with
illumination = 1 and exposure = 0 (as defined by [12]). But for the right image, we
make use of all all the differing illumination (1, 2, 3) and exposure (0, 1, 2) settings
(excluding the exact same illumination = 1 and exposure = 0). This is a total of 8
different illumination/exposure combinations, for each image pair. That brings the total
dataset to 216 (27× 8).

3 The authours thank Prasun Choudhury (Adobe Systems, Inc.) and Jack Tumblin (EECS,
Northwestern University), for their implementation of the trilateral filter.



Fig. 3. Example frames from EISATS scene. Frame 1 (left) and 2 (middle) are shown with ground
truth flow and key (HSV circle for direction, saturation for vector length) shown on the right.

4.2 EISATS Synthetic Dataset

This dataset was made public in [18] for Set 2. We are only interested in bad
illumination conditions. We therefore use the altered the data to resemble illumination
differences in time, as performed in [14]; the differences start high between frames,
then go to zero at frame 50, then increase again. For all t (frame number) we alter the
original image f using a constant brightness. For all x we use f(x) = f(x) + c. The
constant brightness change is defined by:

Even values of t : c = t− 52
Odd values of t : c = 51− t

An example of the data used can be seen in Figure 3.

5 Experimental Results

A previous study, has already pointed out that the results for slight illumination artifacts
are improved using residual images [1]. We now show that these results get even better
when illumination is a major issue (not just a minor one).

5.1 Co-occurrence Metrics

This subsection demonstrates that the important information for correspondence
algorithms is contained in the residual image r. The residual image is, in fact, an
approximation of the high frequencies of the image, and the smoothed image s is an
approximation of a low-pass filter. Obviously, by iteratively running a smoothing filter,
you will get a more and more smoothed image (i.e., you will be getting lower and lower
frequencies, thus reducing the higher frequencies). In [1] the metrics were shown to
represent this effect accurately.

The residual of an image is an approximation of the high frequencies of the image,
so the information should not be reduced. We average the co-occurrence metric results
over dataset [12] to highlight this (Figure 4). These graphs shows that the residual
images do not lose information, in fact the homogeneity is slightly reduced (except
for the trilateral and median filter). The increase in information could be seen as noise
from the filter, or an increase in emphasis of the high-frequencies.
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Fig. 4. Top to bottom: Average scaled homogeniety, uniformity and entropy metrics over all
entire Middlebury dataset. Residual image (left) and smoothed image results (right) are shown,
highlighting the effect of repeated iterations. The uniformity graph for residual images does not
show median or trilateral filter as they are off the scale (trilateral 32 < 112, median 39 < 66).
It is obvious that smoothing the images reduces information (smoothed image graphs), but the
residual images seem to retain a lot of the information.

5.2 Illumination Differences

This subsection uses again the dataset [12]. A qualitative example of error images e can
be seen in Figure 1. This specific error image is generated using the Art right image,
with illumination and exposure both equal to 1 (left image is 1 and 0, respectively).
The image is from [8], and has ground truth available (warping from left to right). The
original error image (left) clearly shows how increasing the exposure (250 to 1000 ms)
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Fig. 5. Top Left: Average Spatial-RMS of intensity difference for f1 and W (f2). Notice the huge
benefit from using residual images. Top Right: zooming in on the stabalised results.The TV-L2

and Mean filter seem to be the best. The trilateral filter is next (but this could be due to information
loss). Closely followed by the sigma and bilateral filter. The median does have a lower RMS, but
this is most probably due to the loss in information. Bottom Left: zero-mean standard deviation
of Spatial-RMS over all results (original image = 0.31, much higher than the rest). Bottom Right:
maximum Spatial-RMS for all dataset (original image = 0.64).

has very big consequences on the illumination differences between the left and right
image. The error image using the TV-L2 residual (right) reduces the error dramatically.
Furthermore the magnitudes of the maximum errors are less; the original image is 1.83
and the TV-L2 residual image is 1.25.

The results for the Spatial-RMS metric are shown in Figure 5. The trilateral filter
was stopped at iteration 10. It is immediately obvious that the original images are far
worse than residual images, around 3 times worse on average. This again highlights that
with extremely different exposures and illuminations, the residual images provide the
best information for matching.

The maximum and zero-mean standard deviation (square root of the sum of squared
RMS error) of all Spatial-RMS values are also shown in Figure 5. The zero-mean
standard deviation (ZMSD) aims to highlight how robust a filter is over the entire
dataset. A low value indicates that more results (considering we are using 89 image
pairs) are lower, compared to another algorithm. The maximum shows the extremes.
The ZMSD is a better measure of robustness, as the maximum value could be an outlier.
The original image is far worse than any of the residual images, so this is ignored here



# Its. 1 50 100 Time / iteration Rank
Filter Ave. S.D. Max. Ave. S.D. Max. Ave. S.D. Max. 470× 370 752× 480 Thomo RMS
Original 0.282 0.313 0.637 0.282 0.313 0.637 0.282 0.313 0.637 - - 5 7
TV-L2 0.068 0.074 0.174 0.080 0.085 0.180 0.080 0.085 0.180 30 60 2 2
Sigma 0.168 0.172 0.267 0.089 0.092 0.141 0.089 0.091 0.138 30 100 1 6
Mean 0.055 0.060 0.120 0.073 0.077 0.178 0.077 0.081 0.170 1 2 4 3
Median 0.039 0.044 0.097 0.041 0.047 0.126 0.041 0.047 0.126 7 15 6 1
Bilateral 0.113 0.115 0.153 0.087 0.091 0.165 0.088 0.092 0.161 160 340 3 5
Trilateral 0.085 0.087 0.125 0.082 0.083 0.118 0.082 0.083 0.118 5000 11000 7 4

Table 1. Average (Ave.), zero-mean standard deviation (S.D.), and maximum (Max.) for the
methodology performed on dataset [12] at different iterations for r(n) (Note: trilateral stopped
at 10 iterations). Average running times per iteration are also included (right) for two image
resolutions. The rank of the filters is also given for both evaluations.

for the comparison, but is a very important result. The median filter has the lowest
results, but we can not be sure if this is from information loss. The trilateral filter
was stopped at 10 iterations, and contains more information than the median filter (see
Figure 4); it boasts quite good results. Although the TV-L2 filter has the best average,
it has the highest maximum and a high ZMSD. The bilateral and sigma filter both have
small maximum errors, but have the highest ZMSD. The mean filter appears to have
good results all around.

We have presented statistical results of the RMS after 1, 50, and 100 iterations
(slices of the graphs in Figure 5). These results are shown in Table 1. You can see
from these results that all the statistics for the original images are higher than any of
the filters. The mean, trilateral, median, and, TV-L2 filter seem to be the most robust;
showing the lowest ZMSD. The mean, TV-L2 and median filters have the best average.
The timing information provided in this table is the average time per iteration, on two
sizes of images (470×370, 752×480 pixel resolution), this is to highlight the scalability
of the filters. The tests were under Windows, the CPU was an Intel Core 2 Duo 3G Hz
(multi-core processing not exploited), with 4GB memory.

5.3 Optical Flow on EISATS Dataset

One of the most influential evaluations of optical flow in recent years is from Middlbury
Vision Group [3]. This dataset is used to evaluate optical flow, in relatively simple
situations. To highlight the effect of using residual images, we used a high ranking
(see [13]) optical flow technique called TV-L1 optical flow [21]. The results for optical
flow were analysed on the EISATS dataset [5]; see [18] for Set 2. Section 4 has full
details of data used. Numerical details of implementation are given in [19]. The specific
parameters used were:

Smoothness: 35 Number of pyramid levels: 10
Duality threshold θ: 0.2 Number of iterations per level: 5
TV step size: 0.25 Number of warps per iteration: 25

The flow field is computed using U(h1, h2) = u. This is to show that a residual
image r provides better data for matching, than for the original image f . We computed



Fig. 6. Sample optical flow results on EISATS scene. Top row: sample original image, ground
truth, and results using original images (respectively). Middle row (left to right): TV-L2, sigma,
and mean filter residual image optical flow results. Bottom row (left to right): median, bilateral,
and trilateral filter residual image optical flow results.

the flow using U(r(n)
1 , r

(n)
2 ) with n = 1, 2, 10, 50, 70, and 100 to show how each filter

behaves. The results are compared to optical flow on the original images U(f1, f2).
Figure 6 shows an example of this effect, obviously the residual image vastly improves
optical flow results. In fact, the original image results are so noisy that they can not be
used.

To compare the results numerically, we calculated the end-point-error using the
error image e = E(u,u∗) and Spatial-RMS (u∗ is ground truth optical flow). The
results can be seen in Figure 7. The zoomed out graph highlights that the results for
the original image are unusable. The shape of the graph is appropriate as well, because
the difference between intensities of the images gets closer together near the middle of
the sequence, and further away near the end. The rest of the graphs show a zoomed in
version showing Spatial-RMS values between 0 and 10. When n = 1 the results are
vastly improved in general, except near the middle of the sequence where illumination
differences are smaller. This shows that although the residual images after 1 iteration
are only good in extreme cases. Looking at the n = 10 graph highlights some of the
major impacts of using residual images. The trilateral filter and the bilateral filter beat
the original images in almost every frame. Note that the trilateral filter was stopped at
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Fig. 7. Spatial-RMS results over entire EISATS sequence. Different numbers of filter iterations
r(n) are shown. Top row: results for n = 40 zoomed out to highlight the poor quality of using
original images (left) and the zoomed in version for n = 1 (right). Middle row: n = 2 (left) and
n = 10 (right). Bottom row: n = 50 (left) and n = 100 (right).

n = 10 due to the long computation time. The n = 50 graph shows a lot of overlap in
this situation, and n = 100 shows a more stable result. The point to note is that different
filters provide different results at different numbers of iterations.

A major point to highlight is that at different frames in the sequence, there are
different rankings for the filters. If you look, for example, at the n = 100 graph at
frame 25, the rank is (best to worst): trilateral, bilateral, sigma, TV-L2, median, then
mean. But if you look at frame 75 (roughly the same difference in illumination) the rank
is (best to worst): mean, bilateral, trilateral, median, sigma, then TV-L2; a completely



n Original TV-L2 Sigma Mean Median Bilateral Trilateral
1 Ave. 55.04 7.58 7.74 7.69 7.36 6.80 6.34

ZMSD 69.41 7.59 7.76 7.71 7.38 6.83 6.36
Rank 7 4 6 5 3 2 1

2 Ave. 55.04 7.42 7.71 7.37 6.84 6.15 4.98
ZMSD 69.41 7.44 7.72 7.39 6.89 6.20 5.05
Rank 7 5 6 4 3 2 1

10 Ave. 55.04 6.88 7.45 5.63 4.73 3.30 1.72
ZMSD 69.41 6.91 7.47 5.69 4.93 3.44 1.93
Rank 7 5 6 4 3 2 1

40 Ave. 55.04 5.36 6.14 2.79 3.85 1.63 1.72
ZMSD 69.41 5.43 6.21 3.21 4.17 1.95 1.93
Rank 7 5 6 3 4 2 1

50 Ave. 55.04 5.17 5.59 2.83 3.85 1.47 1.72
ZMSD 69.41 5.24 5.67 3.27 4.16 1.75 1.93
Rank 7 5 6 3 4 1 2

70 Ave. 55.04 4.94 4.65 2.36 3.84 1.32 1.72
ZMSD 69.41 5.02 4.76 2.88 4.15 1.56 1.93
Rank 7 6 5 3 4 1 2

100 Ave. 55.04 4.76 3.78 1.95 3.84 1.26 1.72
ZMSD 69.41 4.85 3.89 2.53 4.16 1.46 1.93
Rank 7 6 4 3 5 1 2

Table 2. Results of TV-L1 optical flow on EISATS sequence. Results are shown for different
number of iterations n. Statistics are presented for the average (Ave.), zero-mean standard
deviation (ZMSD), and the rank based on ZMSD.

different order! From this it should be obvious that a smaller dataset will not pick up on
these subtleties, so a large dataset (such as a long sequence) is a prerequisite for better
understanding of the behaviour of an algorithm.

Since we have such a large dataset (99 results, 100 frames) we can calculate metrics
for the results as in the previous subsection. We calculate the average and ZMSD for
n = 1, 2, 10, 50, 70, and 100. These results are shown in Table 2. Obviously, the original
images are far worse than any residual image. From this table you can see that the order
of the rankings shift around depending on the number of iterations for the residual image
n. Another point to note is that the trialteral filter (which is stopped at 10 iterations) is
the best until after 50 iterations of the other filters; when bilateral filtering becomes
the best. Simple mean filtering (which is much faster than any other filter) comes in at
rank 3 after 40 iterations, and gets better around 100 iterations. It is notable that the
difference between the average and ZMSD highlights how volatile the results are, the
closer together the numbers, the more consistent the results.

6 Conclusions and Future Research

We have identified a methodology for analysing the effect of illumination reducing
filters using numerical comparisons, exploiting the co-occurrence metrics and



Spatial-RMS. We went on to show that the results for this test do align with the optical
flow performance, on a scene with drastic illumination variation. The tests showed
that generating a simple mean residual image, produces acceptable improvements,
while being the fastest (computational time) and easiest (simplicity) to implement. The
bilateral and trilateral filter were also very good. Future work should test the limits of the
proposed methodology. Other smoothing algorithms and illumination invariant models
need to be tested. Finally, a larger dataset can be used to further verify the illumination
artifact reducing effects of residual images.
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