
Fast Trilateral Filtering

Tobi Vaudrey and Reinhard Klette

The .enpeda.. Project, The University of Auckland, Auckland, New Zealand

Abstract. This paper compares the original implementation of the
trilateral filter with two proposed speed improvements. One is using
simple look-up-tables, and leads to exactly the same results as the
original filter. The other technique is using a novel way of truncating the
look-up-table to a user specified required accuracy. Here, results differ
from those of the original filter, but to a very minor extent. The paper
shows that measured speed improvements of this second technique are
in the order of several magnitudes, compared to the original or LUT
trilateral filter.

1 Introduction

Many smoothing filters have been introduced, varying from the simple mean and
median filtering to more complex filters such as anisotropic filtering [2]. These
filters aim at smoothing the image to remove some form of noise.

The trilateral filter [1] was introduced as a means to reduce impulse noise in
images. The principles of the filter were based on the bilateral filter [7], which
is an edge-preserving Gaussian filter. The trilateral filter was extended to be a
gradient-preserving filter, including the local image gradient (signal plane) into
the filtering process. Figure 1 demonstrates this process using a geometric sketch.
This filter has the added benefit that it requires only one user-set parameter (the
starting bilateral filter size), and the rest are self-tuning to the image.

The original paper [1] demonstrated that this filter could be used for 2D
images, to reduce contrast of images and make them clearer to a user. It went
on to highlight that the filter could be used to denoise 3D images quite accurately.
Recent applications of trilateral filtering have shown that it also very applicable

Fig. 1. Illustration of the filtering process using (from left to right) unilateral
(Gaussian), bilateral, or trilateral filtering (figure from [1]).

to biomedical imaging [9]. It decreases noise while still preserving fine details.
The trilateral filter has also been used to create residual images (illumination
invariant images), to increase the quality of optical flow and stereo matching [8].
Using only one pass produces sufficient results.

Unfortunately, the filter is very slow and requires large local search regions
when the image has a low gradient. This issue only gets worse with increasing
image sizes, as the filter is not linear in running time. This makes large 2D or 3D
images very slow to compute. Also, for smaller images, the use of this filter for
real-time applications (such as driver assistance systems and security cameras)
is limited.

This paper presents a novel numerical approximation for the trilateral filter.
The proposed approach increases the speed of the filter dramatically (e.g., from
hours down to seconds), while still maintaining high accuracy. The filter does
not use parallel processing, but can still be parallalised to further increase
speed. The approach requires one additional user parameter, required accuracy.
Furthermore, we have implemented the trilateral algorithm for standard 2D
images, which has been made publicly available [6].

We first introduce the original trilateral filter, followed by a simple speed up
technique that does not generate data loss (look up tables). We then present our
novel approach, using kernel truncation based on required data accuracy. This is
followed by results demonstrating the speed improvements, and the differences
in results to the original filter.

2 Definition of Trilateral Filter

An image is defined by f(x) ∈ Rn (n = dimensionality), where x ∈ Ω is the
pixel position in image domain Ω. Generally speaking, an n-D (n-dimensional)
pixel-discrete image has an image domain defined as, ∅ ⊂ Ω ⊆ Xn ⊂ Nn
(Xn is our maximum discrete index set of the image domain in dimension n).
A smoothing operator will reduce an image to a smoothed version of itself,
specifically S(f) = s, where s is in the same image domain as f . To introduce
the trilateral filter, we must first define the bilateral case; we will then go on to
define the traditional trilateral filter using this notation.

2.1 Bilateral Filter

A bilateral filter is actually an edge-preserving Gaussian filter. Of course, the
same technique could be used with any type of simple filter (e.g., median or
mean). Offset vectors a and position-dependent real weights w1(a) (spatial
smoothing) define a local convolution, and the weights w1(a) are further scaled
by a second weight function w2 (colour/magnitude smoothing), defined on the
differences f(x + a)− f(x):

s(x) =
1

k(x)

∫
Ω

f(x + a) · w1(a) · w2 [f(x + a)− f(x)] da (1)

k(x) =
∫
Ω

w1(a) · w2 [f(x + a)− f(x)] da

Function k(x) is used for normalization. The weights w1 and w2 are defined
by Gaussian functions with standard deviations σ1 (colour) and σ2 (spatial),
respectively (another filter can be substituted, but will provide different
results). The smoothed function s equals SBL(f). The bilateral filter requires
a specification of parameters σ1, σ2, and the size of the used filter kernel 2m+ 1
in f (m is the half kernel size and is n-dimensional). Of course, the size of the
kernel can be selected using σ1 and σ2.

2.2 Trilateral Filter

The trilateral filter is a “gradient-preserving” filter. It aims at applying a bilateral
filter on the current plane of the image signal. The trilateral case only requires
the specification of one parameter σ1. At first, a bilateral filter is applied on the
derivatives of f (i.e., the gradients):

gf (x) =
1

k∇(x)

∫
Ω

∇f(x + a) · w1(a) · w2 (||∇f(x + a)−∇f(x)||) da (2)

k∇(x) =
∫
Ω

w1(a) · w2 (||∇f(x + a)−∇f(x)||) da

To approximate ∇f(x), forward differences are used, and more advanced
techniques (e.g., Sobel gradients, 5-point stencil) are left for future studies. For
the subsequent second bilateral filter, [1] suggested the use of the smoothed
gradient gf (x) [instead of ∇f(x)] for estimating an approximating plane

pf (x,a) = f(x) + gf (x) · a (3)

Let f4(x,a) = f(x + a)− pf (x,a). Furthermore, a neighbourhood function

N(x,a) =
{

1 if |gf (x + a)− gf (x)| < c
0 otherwise (4)

is used for the second weighting. Parameter c specifies the adaptive region and
is discussed further below. Finally,

s(x) = f(x) +
1

k4(x)

∫
Ω

f4(x,a) · w1(a) · w2(f4(x,a)) ·N(x,a) da (5)

k4(x) =
∫
Ω

w1(a) · w2(f4(x,a)) ·N(x,a) da

The smoothed function s equals STL(f).
Again, w1 and w2 are assumed to be Gaussian functions, with standard

deviations σ1 and σ2, respectively. The method requires specification of
parameter σ1 only, which is at first used to be the diameter of circular
neighbourhoods at x in f ; let gf (x) be the mean gradient of f in such a
neighbourhood. The parameter for w2 is defined as follows:

σ2 = β ·
∣∣∣∣max
x∈Ω

gf (x)−min
x∈Ω

gf (x
∣∣∣∣ (6)

(β = 0.15 was recommended in [1]). Finally, c = σ2.

3 Numerical Speed Improvements

In the previous section, we defined the trilateral filter in a continuous domain.
But as we are all aware, the numerical approximation needs to be implemented in
real-life. And obviously, this filter takes a lot of processing to work. This section
aims at showing how numerical implementations are improved dramatically.

In practice w1 (the spatial weight) from Equation (2) can be pre-calculated
using a look-up-table (LUT), as it only depends on σ1, m (kernel size), and a
(offset from central pixel). As this function is Gaussian, the LUT is computed
as follows:

W1(i) = exp

(
−2 ‖i‖2

σ2
1

)
(7)

where 0 ≤ i ≤ m (usually i ∈ Nn, but can also approximate vectors in Qn

using interpolation). W1 is used by simple referencing using W1(|a|),1 which
approximates a quarter of the Gaussian kernel (as the Gaussian function is
symmetric). Unfortunately, the intensity weight w2 can not use a look up table,
as it depends on the local properties of the image.

Similar principles can be applied to Equation (3). In this equation, w1

depends on a local adaptive neighbourhood A, depending on the magnitude
of the gradients. However, the function is only dependent on the distance from
the central pixel a, and since the maximum of A is known, the LUT can be
computed as in Equation (7), but where 0 ≤ i ≤ max(A). Again, w2 depends on
local information, no LUT can be used. This approach is called the LUT-trilateral
filter.

From here, to improve speed, there need to be numerical approximations.
The presented approach is a smart truncation of the kernel to a defined accuracy
ε ∈ Q+, and 0 < ε < 1. We know that the function is Gaussian so we shall use
this for our truncation. If we want to ignore any values below ε, then only values
above this should be used:

ε ≤ exp

(
−2 ‖i‖2

σ2
1

)
which leads to ‖i‖ ≤ σ1

√
−1

2
ln(ε) = T

where T is the threshold. (Note that ln(ε) is strictly negative, so T is strictly
positive.) In practice, this means that we can compute a look up table as defined
in Equation (7), where 0 ≤ ||i|| ≤ T . This approach could be applied to a bilateral
filter, but does not really benefit it. However, when dealing with the trilateral
filter, this reduces the number of equations dramatically (as the largest kernel
size is equal to the size of the smallest dimension minn(Xn) in the image).
This truncation will increase the error, but only by, at most, ε (minn(Xn))2.
We call this method the fast-trilateral filter. Note that this filter has only two
parameters (which are both logical); σ1 (the initial kernel diameter) and ε (the
required accuracy).

1 |a| is here short for (|a1|, . . . , |an|), and ||a|| is the L2-norm.

Note that this does not exploit any parallel processing, but is open to massive
parallel processing potential, as every pixel is independent within the iteration
of trilateral filtering. This is especially noticeable for GPU programming, where
the truncated LUT can be saved to texture memory [5].

4 Experimental Results of Filter

We have implemented the trilateral algorithm for standard 2D images, which has
been made publicly available [6]. The experiments of this section were performed
on a Intel Core 2 Due 3G Hz processor, with 4GB memory, on a Windows Vista
platform. Parallel processing was not exploited (e.g., OpenMP or GPU). Of
course, further speed improvements can be gained by doing so.

4.1 Dataset

We illustrate our arguments with the 2005 and 2006 Middlebury stereo datasets
[4], provided by [3]. We selected a sample set to use for our experiments: Art,
Books, Dolls, Reindeer and Baby1. For each image from this dataset, we use the
full resolution image (approx. 1350 × 1110). We then scale down the image by
50% in both directions, and repeat this 5 times (i.e., 50%, 25%, 13%, 6%, and
3% of original image size), see right part of Figure 2 for example of images used.
This allows us to demonstrate running times for differing image sizes.

4.2 Comparison of Running Time

Figure 2 shows the running times of the algorithms on the Art images. The
results compare two σ1 values of 3 and 9, and the fast trilateral filter uses
ε = 10−12. There is obviously a massive improvement when using trilateral-LUT
compared to the original (especially with larger images). With smaller images,
the improvement is under 1 magnitude, but increases quickly up to around 1
magnitude improvement (see 1390× 1110 results). There is no reason to use the
original method instead of the LUT, as there is no accuracy loss with the LUT
(the memory usage is negligible compared to calculating image pyramids).

The fast-trilateral filter shows a massive improvement over the other methods
(except 43 × 34, which is not a practical image size). The improvement only
gets better as the size of the image increases; for the largest image size the
difference is 46 hours (original) and 5 hours (LUT), compared to 86 seconds for
the fast-trilateral filter. That is a dramatic decrease (several orders of magnitude)
in computation time.

From these results, we can infer that the improvements will only get better
when extending the filter to 3-dimensions (e.g., filtering noisy 3D-meshes), as
the number of pixels (or voxels) increases further.

When using the fast-trilateral filter, the user selects the required accuracy.
The less accuracy wanted, the faster the filter runs. The comparison in Figure 2 is
for the highest accuracy (ε = 10−12), which highlights the improvement over the
other filters. To show the effect of reducing the accuracy, compared to running

1 E+02

1 E+03

1 E+04

1 E+05

1 E+06

1 E+07

1 E+08

1 E+09

nn
in
g
Ti
m
e
(m

ill
is
ec
.)

Orig. (σ = 3) LUT (σ = 3) Fast (σ = 3) Orig. (σ = 9) LUT (σ = 9) Fast (σ = 9)

1 E+00

1 E+01

1 E+02

1390 × 1110 695 × 555 347 × 277 173 × 138 86 × 69 43 × 34

Lo
g.
 R
u

Image Size (pixels)

Fig. 2. Running times for Art image (left) for different scales of an image (right);
displayed in log10 scale. Note: original was not run for σ = 9 on largest image, nor on
second largest image (due to time). For the fast trilateral results, ε = 10−12.

100

200

300

400

500

600

700

ve
. R

un
ni
ng

 T
im

e
(s
ec
.)

ε = 1 E‐12 ε = 1 E‐10 ε = 1 E‐08 ε = 1 E‐06 ε = 1 E‐04

0

100

9 7 5 3

A
v

σ value

Fig. 3. Average running times for fast-trilateral filter on the dataset of images at
maximum resolution. Shows the results for varying kernel sizes σ1 and accuracy ε.

time, we ran the filter across the dataset (at maximum resolution, i.e., approx.
1350× 1110) and averaged the running times. Figure 3 shows the results of the
fast-trilateral filter for this test using varying kernel sizes (σ1). This graph shows
that the improvements with decreasing accuracy are linear (within each σ1). A
point to note is that when using σ1 = 9, the difference in running time goes from
700 seconds (ε = 10−12), down to 290 (ε = 10−4). The next section demonstrates
that the results from the fast-trilateral filter are very close to the original (and
LUT) filter, showing that this speed improvement is for almost no penalty.

4.3 Accuracy Results

A difference image d is the absolute difference between two images,

D(s, s∗) = d with d(x) = | s(x)− s∗(x) | (8)

where s is the fast-trilateral result, and s∗ is the result from the LUT-trilateral
(original) filter. Using this we can calculate the maximum difference maxx∈Ω(d),
in the image. An example of difference images can be seen in Figure 4. This figure
illustrates that there are some subtle differences between the LUT-trilateral filter

and the fast-trilateral filter, but they are actually minor. When using ε = 10−12,
the differences are too negligible to even count. As for using ε = 10−4, the
differences are still very small (maximum error is still less than half an intensity
value).

To assess the quality of an image, there needs to be an error metric. A
common metric is the Root Mean Squared (RMS) Error, defined by

ERMS(d) =

√
1
|Ω|

∑
x∈Ω

(
d(x)2

)
(9)

where |Ω| is the cardinality of the image domain. The standard RMS error gives
an approximate average error for the entire signal, taking every pixel’s error
independently.

The second metric we use is the normalised cross correlation (NCC)
percentage

C(s, s∗) =
1
|Ω|

∑
x∈Ω

(
s(x)− µ(s)

) (
s∗(x)− µ(s∗)

)
σ(s)σ(s∗)

× 100% (10)

where µ(h) and σ(h) are the mean and standard deviation of image h,
respectively. An NCC of 100 means that the images are (almost) identical, and
an NCC of 0 means that the images have very large differences.

We calculated the NCC, max(d) and RMS for the entire dataset, the
summary of results can be seen in the table below (∗ is the don’t-care character):

Average Minimum at (σ1, ε) Maximum at (σ1, ε)
NCC (%) 100 99.994 at (9, 10−4) 100 at (∗, ∗)
RMS (px) 8.7× 10−5 < 10−12 at (3, 10−12) 0.0016 at (9, 10−4)
max(d) (px) 0.36 < 10−12 at (3, 10−12) 5.3 at (9, ∗)

From this table it is very apparent that the fast-trilateral filter retains
the smoothing properties of the LUT (original) version. The difference is only
apparent when using high kernel values σ1 and also low accuracy values (high
ε). Even then, the errors are negligible. In fact, the maximum difference of any
individual pixel was only 5.3, with an average maximum of 0.36 .

5 Conclusions and Future Research

In this paper we have covered the original implementation of the trilateral filter.
We have suggested two speed improvements. One is using simple look-up-tables,
and the other is using a novel way of truncating the look-up-table to a user
specified required accuracy.

The speed improvements were shown to be drastic (in the order of several
magnitudes) compared to the original or LUT trilateral filter. We identified
that the fast-trilateral filter provides very accurate (almost identical) results,
compared to the original (and LUT) trilateral filter. This massive speed gain for

Fig. 4. Left: Art image that has been smoothed. Centre and Right: difference image
between LUT and fast-trilateral filter, using ε = 10−4 (centre, max(d) = 0.36) and
ε = 10−12 (right, max(d) = 3.1 × 10−5), with σ1 = 9. Difference images scaled for
visability, white ↔ black into 0↔ max(d).

a very small difference in results is a huge benefit, and thus makes the trilateral
filter more usable.

Future work will be to improve speed using parallel architecture (e.g., GPU,
Cell Processors, or OpenMP). Also, further applications of the trilateral filter
have not been recognised as yet.

Acknowledgment: The authors would like to thank Prasun Choudhury
(Adobe Systems, Inc., USA) and Jack Tumblin (EECS, Northwestern University,
USA) for their original implementation of the trilateral filter.

References

1. Choudhury, P., and Tumblin, J.: The trilateral filter for high contrast images and
meshes. In Proc. Eurographics Symp. Rendering, pages 1–11 (2003)

2. Gerig, G., Kubler, O., Kikinis, R., and Jolesz, F.A.: Nonlinear anisotropic filtering
of MRI data. IEEE Trans. Medical Imaging, 11:221–232 (2002)

3. Hirschmüller, H., and Scharstein, D.: Evaluation of stereo matching costs on images
with radiometric differences. IEEE Trans. Pattern Analysis Machine Intelligence,
to appear

4. Middlebury data set: stereo data http://vision.middlebury.edu/stereo/data/
5. Pharr, M., and Fernando, R.: Gpu gems 2: programming techniques for

high-performance graphics and general-purpose computation, Addison-Wesley,
online (2005)

6. Tobi Vaudrey’s homepage: http://www.cs.auckland.ac.nz/∼tobi/
7. Tomasi, C., and Manduchi, R.: Bilateral filtering for gray and color images. In

Proc. IEEE Int. Conf. Computer Vision, pages 839–846 (1998)
8. Vaudrey, T., and Klette, R.: Residual images remove illumination artifacts

for correspondence algorithms! Technical report, www.mi.auckland.ac.nz, The
University of Auckland (2009).

9. Wong, W. C. K., Chung, A. C. S., and Yu S. C. H.: Trilateral filtering for biomedical
images, In Proc. IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro
(ISBI), pages 820–823 (2004)

