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Abstract. Lane detection is an important component of driver assis-
tance systems (DAS), and highway-based lane departure solutions have
been in the market since the mid 1990s. However, improving and gener-
alizing vision-based lane detection solutions remains to be a challenging
task. Particle filtering of boundary points is a robust way to estimate
lanes. This paper introduces a new lane model in correspondence to
this particle filter-based approach. Furthermore, a modified version of
an Euclidean distance transform is applied on an edge map to provide
information for boundary point detection. In comparison to the edge
map, properties of the distance transform support improved lane detec-
tion including a novel initialization method. Two lane tracking methods
are also discussed while focusing on efficiency and robustness, respec-
tively. Finally, the paper reports about experiments on lane detection
and tracking.
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1 Introduction

Lane detection plays a significant role in driver assistance systems (DAS), as it
can help one to estimate the geometry of the road ahead, as well as the lateral
position of the ego-vehicle on the road. Lane detection is used in intelligent cruise
control systems, for lane departure warning, road modeling, and so on. Typically,
lane detection and tracking are used for localizing lane boundaries in given road
images.

Lane detection and tracking have been widely studied for driving on a freeway
[6, 16] or an urban road [22], for single [6, 23] or multiple [1, 17] lanes, with
[3] or without [24] lane marks, based on region (texture [29] or color [8]) or
edge [19] features. Various models have been applied to describe the borders
of a lane, such as piecewise linear segments [19], clothoids [6, 16], parabola [11],
hyperbola [25, 15], splines [23, 24], or snakes [24, 28]. Several lane detectors have
been implemented and named in the literature, such as GOLD [3], SCARF [8],
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RALPH [20], MANIAC [10], or LANA [14, 15]. Though some of them work well
in a particular environments, generally, it is a challenging task to robustly detect
lanes in various situations. Reasons for this difficulty are, for example, as follows:

– difficulties caused by various conditions of illumination and poor quality of
lane markings,

– violation of some commonly used assumptions, such as constant road width,
parallel left and right lane boundaries, or the use of other simplified geometric
road models (e.g., parabolic boundaries),

– difficulties caused by surrounding objects, such as trees on the roadside or
above the road, occlusions caused by pedestrians or other vehicles on the
road, and

– missing information in the real world about the actual lanes or roads (such
as no lane markers, or unpaved roads).

For the reasons stated above, it is proposed in [22] that weak models (i.e., with no
assumption about the global shape of a lane) are preferable than strong models,
which use several parameters to model the global geometry of a lane. This paper
introduces a new weak road model for lane detection and tracking. Instead of
modeling global road geometry, this new model only constrains relations between
points on the left and right lane boundaries. Tracking based on these points in the
bird’s-eye image (using a particle filter) provides lane detection results. Further-
more, a modified version of a standard Euclidean Distance Transform (EDT)
is applied on the edge map of the bird’s-eye image. Utilizing some beneficial
properties of this distance transform for lane detection, this paper specifies an
innovative initialization method which also uses a particle filter. Furthermore,
the distance transform also provides more information (such as the centerline of
a lane) compared to general edge-based lane detection.

This paper is organized as follows: Section 2 describes a new lane model.
Lane detection using this new lane model, as well as particle filter is introduced
in Section 3. Low-level image processing, especially the distance transform, is
presented in detail in the lane detection section. Two lane tracking methods
focusing on efficiency or robustness, respectively, are discussed in Section 4.
Experimental results are given in Section 5. Finally, conclusions are provided in
Section 6.

2 A New Lane Model

The lane model as used in this paper is illustrated in Figure 1; the 3D view
also contains the xy-coordinate system on the ground manifold. In this paper we
assume a ground plane. ([26] proposes cubic B-splines for modeling the ground
manifold, which is more correct.)

Five parameters xc, yc, α, β1, and β2 are used to model opposite points PL

and PR, located on the left or right lane boundary, respectively. PC = (xc, yc)
is the centerline point of a lane in the ground plane. α is the zenith angle above
PC , defined by an upward straight line segment between PC and the zenith PZ
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Fig. 1. Lane model as used in this paper. (a) 3D lane view; boundaries are drawn in
bold. (b) Perspective 2D lane view in the input image. (c) Bird’s-eye image of the lane.
Slope angles β1 and β2 are shown in the 3D view and the bird’s-eye images; the zenith
angle α in the 3D and the projective view. See text for further explanations.

of fixed length H, and a line incident with PZ and either PL or PR. As the height
H is fixed, the width of a road at points PL and PR can easily be calculated as

2H · tan(α)

β1 and β2 are the slope angles between short line segments L1 and L2 and a
vertical line in the ground plane; the two short line segments L1 and L2 are
defined by a fixed length and local approximations to edges at lane boundaries
(e.g., calculated during point tracking). Ideally, L1 and L2 should coincide with
tangents on lane boundaries at points PL and PR; in such an ideal case, β1 and
β2 would be the angles between tangential directions of lane boundaries at those
points and a vertical line. By applying this model, a lane is identified by two
lane boundaries, and points are tracked along those boundaries in the bird’s-eye
image.

This model does not use any assumption about lane geometry, and is applica-
ble to all variates of lanes. For example, this also allows us to detect a lane with
varying width, even in a single image. As β1 and β2 are calculated separately,
a lane may also have nonparallel left and right boundaries. Lane detection and
tracking methods, using this model, are discussed in Sections 3 and 4.
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3 Lane Detection Using a Particle Filter

For lane detection in a single image, a particle filter may be used to track points
along lane boundaries; see [22] which simply uses coordinates of boundary points
as the tracking state. Below we show that our lane model provides more robust
tracking. Furthermore, a novel initialization method is adopted based on a dis-
tance transform applied to the bird’s-eye edge map. The whole procedure of lane
detection is illustrated in Figure 2 by an example.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. The overall work flow of lane detection. (a) Input image. (b) Bird’s-eye image.
(c) Edge map. (d) Distance transform. (e) Initialization. (f) Lane detection results,
shown in the bird’s-eye image. (g) Lane detection results, shown in the input image.

The algorithm starts with mapping the perspective input image into a bird’s-
eye view (i.e., an orthogonal projection toward the zenith), using a homography
defined by four vertices of a rectangle in the bird’s-eye view. An edge detection
method, as introduced in [3] for lane detection, is then adopted to detect lane-
mark-like edges in the bird’s-eye image. After binarization of the resulting edge
map and denoising of isolated edge points or small blobs, a real orientation
distance transform (RODT) is applied; see Section 3.1 for a specification of this
transform. The resulting distance map allows us to design a novel initialization
method for finding the initial boundary point. This point is used to initialize the
parameters of the particle filter, for tracking further boundary points through
the whole image; a lane is finally detected.

3.1 Low-level image processing

Low-level image processing is composed of three steps: bird’s-eye-view mapping,
edge detection with denoising, and distance transform.

Bird’s-eye-view mapping. As in [13], a four-points correspondence is used
for the mapping from the input image into the bird’s-eye image. The mapping is
achieved by selecting four points when calibrating the ego-vehicle’s camera(s),
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Fig. 3. (a) Input Image. (b) and (c) are bird’s-eye images based on different distance
definitions. Four-point correspondence (points shown in yellow) is established by cali-
bration; the driving direction is indicated by the arrow.

and by using the locally planar ground manifold assumption. One benefit of the
bird’s-eye image is that the used distance scale can be adjusted by selecting
different sets of four corresponding points (i.e., by scaling the “length” of the
rectangle). This proved to be useful for detecting discontinuous lane markers as
well as for further forward looking situations. Also, lane marks in the bird’s-eye
image have a constant width, which will be utilized for edge detection.

Edge detection and noise removal. We recall an edge detection method as
introduced in [3]. Black-white-black edges in vertical direction are detected in
the bird’s-eye image by a specially designed simple algorithm. Every pixel in
the bird’s-eye image, with value b(x, y), is compared to values b(x −m, y) and
b(x + m, y) of its horizontal left and right neighbors at a distance m ≥ 1 as
follows:

B+m(x, y) = b(x, y)− b(x+m, y)
B−m(x, y) = b(x, y)− b(x−m, y)

and finally, using a threshold T , the edge map value will be

r(x, y) =
{

1, if B+m≥ 0, B−m≥ 0, and B+m +B−m≥ T
0, otherwise

This edge detection method has the following properties. First, m can be
adjusted to fit various widths of lane marks. Second, pixels within a lane mark
are all labeled as being edge pixels, which is different from gradient-based edge
operators (e.g. Canny, Sobel). This greatly improves the robustness in detecting
points of lane marks. Third, shadows on the road surface do not influence edge
detections at lane marks. Thus, the edge detection method can be used under
various illumination conditions. Finally, horizontal edges are not detected. For
an example of edge detection, see Figure 4.

Edge detection as introduced above may generate some isolated small blobs
(including single points) besides the edges of real lane marks. These noisy blobs
will greatly affect the result of the following distance transform (see Fig. 6;
the used distance transform will be discussed in Section 3.1). We remove such
noise by, first, finding the isolated blobs, second, setting them to zero (non-edge
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(a) (b) (c)

Fig. 4. Edge detection. (a) Bird’s-eye image. (b) Edge detection using the Canny op-
erator. (c) Edge detection following [3].

pixels). Two centered small windows (inner and outer) are used (see Fig. 5),
where the outer window is slightly larger than the inner one in width and height.
The isolated blobs can be detected by moving these two windows (concurrently)
through the whole edge map, and comparing the sums of edge values within
them. If the two sums are equal (i.e., the gap between both windows does not
contain any edge point), then edge blobs in the inner window are identified as
being isolated, and set to be zero. For computational efficiency, an integral image
of the edge map is used for calculating the sum in those small windows.

Distance transform. The distance transform applied to the binary edge map
labels each pixel with the distance to the nearest edge pixel (see [21] for details).
Edge pixels are obviously labeled by 0, and this is shown as black in the generated
distance map. Pixels “in the middle of a lane” are supposed to receive large
labels, shown as bright pixels in the distance map (see Figure 7).

The Euclidean distance transform (EDT) is in general the preferred option,
using the Euclidean metric for measuring the distance between pixels. [7] proved
that a 2D EDT can be calculated by two 1D EDTs, and this greatly improves

gap
Outer window

Inner window

edge blob

w1

h1

w2

h2 gap

gap gap

Fig. 5. Detection of isolated blobs in the binarized edge map. Inner window and outer
window move at the same time through the edge map. When the gap between the
inner and outer window contains no edge pixel, an isolated blob is detected in the
inner window.
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(b)

(d)(c)

(a)

Fig. 6. Effect of isolated (“noisy”) points in an edge map for the distance transform.
(a) Noisy edge map with an isolated edge point in the middle of the lane. (b) Denoised
edge map. (c) RODT based on (a). (d) RODT based on (b).

the computation efficiency. A modified EDT was proposed in [27], called ori-
entation distance transform (ODT). This divides the Euclidean distance into a
contributing component in row and column direction. (Note that the use of a
4- or 8-distance transform would not lead to the same row and column compo-
nents; however, practically there should be not a big difference with respect to
the given context.) A complex number is assigned to each pixel by the ODT, with
the distance component in the row direction as the real part, and the distance
component in the column direction as the imaginary part. Then the magnitude
and the phase angle of such a complex number at a non-edge pixel represent the

(a) (b) (c)

(d) (e)

Fig. 7. EDT and ODT on a bird’s-eye road image. (a) Bird’s-eye road image. (b)
Binary edge map (the area in the rectangle is a discontinuous lane mark). (c) EDT. (d)
Real part of ODT (absolute value). (e) Imaginary part of ODT. (c)(d)(e) have been
contrast adjusted for better visibility.
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Euclidean distance and the orientation to the nearest edge pixel, respectively.
Note that distance component in row direction is signed, with a positive value
indicating that the nearest edge point lies to the right, and a negative value if
it is to the left. See Figure 7 for an example. The imaginary part is mostly dark
because nearest edge pixels are in general in the same row, due to the applied
edge detection method. Thus, we decided to ignore the imaginary part.

This paper uses only the Euclidean distance in row direction, and we call
this the real orientation distance transform (RODT). The RODT of our edge
map offers various benefits. First, the initialization of lane detection becomes
much easier (to be discussed in Section 3.2). Second, discontinuous lane marks
will make almost no difference with continuous ones in the RODT (and this is
different to the EDT of the edge map), as illustrated in Figure 7. Third, more
information about the lane (e.g. information on centerline or road boundary, to
be indicated in Sec. 3) is provided by the distance transform compared with the
edge map. Generally, a (non-edge) pixel on the centerline of a lane will have
a local maximum in distance to the lane boundaries. Thus, combined with the
lane model introduced in Sec. 2, a point with a high distance value is likely to
be a centerline point PC . The usefulness of these properties of the RODT will
be discussed in the following sections.

The distance transform is sensitive to isolated points or blobs in a lane de-
tection situation. As illustrated in Fig. 6, a single edge point in the middle of
a lane would already greatly change the distance value for the surrounding pix-
els. Thus, a very simple denoising method on the edge map, as introduced in
Section 3.1 is necessary, and proved to be sufficient.

3.2 Initialization

The aim of the initialization step is to find an initial value (e.g., the x-coordinate
of a point PL or point PR in a selected image row) for the specified model. In [22],
a clustered particle filter is used in order to find a start point on a lane boundary.
In distinction to this, we fully utilize the distance map to find the first left and
right boundary points. In a pre-defined start row (near to the bottom) of the
bird’s-eye image, a search is conducted, starting at the middle of the row, for a
pixel which has a positive distance value but a negative distance value at its left
neighbor (see Figure 8). When such a pixel is found, the left and right boundary

Left boundary 
edge pixel

Right boundary 
eldge point

0 -1 01d-d

Search result

Fig. 8. Illustration of the search procedure in the start row of the distance map. Note
that the distance values are signed, as described in Section 3.1.
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points in the start row are instantly known using the distance value of the found
pixel and of its left neighbor.

For the initial state X0(xc0 , α0, β10 , β20) of the particle filter, xc0 and α0 are
initialized by using the detected left and right start points, while β10 and β20

are simply set to be zero.

3.3 Particle filter for lane detection

Particle filters are widely used for lane detection and tracking, such as in [22,
25]. This section discusses particle filtering for our new lane model. The state
vector X = (xc, α, β1, β2)T to be tracked is defined by the parameters of the lane
model, without yc, as yc will be calculated incrementally by applying a fixed step
∆, starting at row yc0 in the bird’s-eye image. For the application of a particle
filter, two models [9] are discussed in the following.

The dynamic model. The dynamic model A is used to define the motion of
particles in the image. The prediction value X̂n is generated from Xn−1 by using
X̂n = A ·Xn−1. We simply take A as being the identity matrix, because of the
assumed smoothness of the lane boundary.

The observation model. The observation model determines each particle’s
importance factor for re-sampling. Based on the RODT information, it is reason-
able to assume that subsequent pixels on the lane boundary will have a distance
value zero, and points on the centerline of a lane will have large distance values.
In terms of our lane model, points (xcn , ycn) have large distance values, and L1

and L2 coincide with short lines of pixels which all only have small distance
values.

Tracking step n is identified by ycn
= (yc0 + n ·∆). We calculate the lateral

position of the left boundary point of the lane from the predicted state vectors,
with X̂i

n(x̂i
cn
, α̂i

n, β̂
i
1n
, β̂i

2n
) for the ith particle.

From now on, PL and PR only represent the lateral position of boundary
points, for simplicity. The left position is calculated as follows:

P i
L = x̂i

cn
−H · tan α̂i

n

Next, the sum of the distance values along line segment L1 is as follows:

Si
L1

=
L1/2∑

j=−L1/2

∣∣∣d(P i
L + j · sin β̂i

1n
, ycn

+ j · cos β̂i
2n

)∣∣∣
Here, d(·, ·) is the distance value of the RODT. Calculating Si

L2
in the analogous

way, we obtain the ith importance factor

ωi
dist =

1
2πσ1σ2

exp

(
−

(Si
L1
− µ1)2

2σ1
−

(Si
L2
− µ2)2

2σ2

)
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For the centerline point (xi
cn
, ycn

), the importance factor is equal to

ωi
center =

1
σ3

√
2π

exp

−
(∣∣∣ 1

d(xi
cn

,ycn )

∣∣∣− µ3

)2

2σ3


where µk and σk are constants, for k = 1, 2, 3 . The final observation model is
given by the factors

ωi = ωi
dist · ωi

center

4 Lane tracking

Lane tracking uses information defined from previous results to facilitate the
current detection. Actually, there are two aims to utilize previous information:
one is to improve the computational efficiency of the current detection by utiliz-
ing a priori knowledge; the other one is robustness, as there is more information
available by combining the current and previous state. Efficiency and robustness
sometimes cannot be achieved at the same time, and they might be biased due
to the given (application) context. Generally, lane detection in some situations
(such as on a highway) will be relatively easier compared to others (such as on
an urban road), depending on road conditions and quality of lane marks. Diffi-
culties as discussed in Section 1 mainly happen when detecting a lane in some
challenging situation. In conclusion, when performing lane tracking, we will pay
more attention to the computation efficiency for less challenging situations, but
more to robustness for complex road situations. For these reasons, this section
introduces two lane tracking methods: efficient lane tracking and robust lane
tracking.

4.1 Efficient lane tracking

The efficient lane tracking method is for situations characterized by good road
conditions and good quality lane marks (such as on a highway). It simply uses
previously detected lane boundary points, adjusts them according to the ego-
vehicle’s motion model, and then offsets them according to values of the RODT
on the current bird’s-eye edge map.

Note that when a lane is detected (as in Section 3), it is reasonably repre-
sented just by two sequences {PLn

: n = 0, 1, . . . , N} and {PRn
: n = 0, 1, . . . , N}

of points on its left and right lane boundaries in the bird’s-eye image. Here, N
is determined by the forward-looking distance.

Tracking of a lane through an image sequence is then simplified as tracking
of these two point sequences. Sequences {P (t)

Ln
} and {P (t)

Rn
}, detected in frame t,

are partly already driven through by the ego-vehicle at time t+ 1. The length of
this already driven part is determined by the ego-vehicle’s motion model (speed
and yaw angle). The detection process of {P (t+1)

Ln
} and {P (t+1)

Rn
} at time t + 1

is composed of three steps: adjustment caused by the driven distance and the
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Lane detection 
in frame t

  Adjustment of
{PLi, PRi, i=0,...,N-k}

     Detection of
{PLi, PRi, i=N-k+1,...,N}

t=t+1

         Offset of
{PLi, PRi, i=0,...,N-k} by 
value of distance transform

 Frame t+1
 Birds-eye view 
mapping and dis-
tance transform

Fig. 9. Efficient lane tracking scheme.

variation in yaw angle, new points detection, and offset specification according
to the values of the RODT in the bird’s-eye edge map.

Because of the driven distance between frames t and t+ 1, it holds (in prin-
ciple) that

P
(t+1)
Ln

= P
(t)
L(n+k)

, P
(t+1)
Rn

= P
(t)
R(n+k)

, n = 0, 1, . . . , N − k

Here, k is determined by the driven distance between time t and t+1, and is usu-
ally a small number. Driven distance is determined from odometry. Furthermore,
points

{P (t+1)
Ln

: n = 0, 1, . . . , N − k} and {P (t+1)
Rn

: n = 0, 1, . . . , N − k}

are obtained by adding some translation (according to n) caused by the variation
in driving direction between t and t+ 1.

For the detection of new points {P (t+1)
Ln

: n = N−k+1, . . . , N} and {P (t+1)
Rn

:
n = N − k + 1, . . . , N}, note that k is small and we also assume smoothness of
lane boundaries. Thus, we simply start as follows:

P
(t+1)
Ln

= P
(t+1)
Ln−1

, P
(t+1)
Rn

= P
(t+1)
Rn−1

, n = N − k + 1, . . . , N

For further refinement, those predictions {P (t+1)
Ln

} and {P (t+1)
Rn

} from the pre-
vious result at frame t are likely to be already located near the true points on the
boundaries, as the variation of a lane is usually minor between two subsequent
frames. – The adjustment

P
(t+1)
Ln

= P
(t+1)
Ln

+ d(P (t+1)
Ln

, ycn
), n = 0, 1, . . . , N

P
(t+1)
Rn

= P
(t+1)
Rn

+ d(P (t+1)
Rn

, ycn), n = 0, 1, . . . , N

of all N + 1 points is finally achieved by information available from values of the
RODT of the current bird’s-eye edge map.

The described efficient lane tracking scheme is summarized in Figure 9. The
main feature of this method is its computational efficiency. Experiments prove
that the computation time needed for those three steps of efficient lane tracking
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is almost negligible. Thanks to a minor variation between neighboring frames
and the RODT, lane tracking results in highway-like situations are very much
acceptable, except for rarely occurring outliers, which are always caused by some
noisy non-boundary edge points (see experimental results as shown in Figure 15).

4.2 Robust lane tracking

Urban roads differ from highways, as they provide increased complexity of envi-
ronments which results in difficult lane detection. In such situations, robustness
is the dominant importance factor. A scheme for robust lane tracking is illus-
trated in Figure 10. This process is also composed of three main steps: first,
adjustment of the result from the previous frame; second, detection of more
boundary points (these two steps are the same as we do in the efficient lane
tracking); third, lane detection as described in Section 3.

The initialization of the third step (i.e., initialization of the particle filter) is
facilitated by the results of the first two steps. The only difference compared to
lane detection is that when a pair of points on the left and right lane boundary
is calculated from the tracking state as introduced in Section 3, two more pairs
of points are generated. Then, a comparison among these three pairs of points is
conducted by maximum likelihood, and this produces the final pair of detected
points of the left and right boundary. As the first two steps have been discussed
already in Section 4.1, as well as lane detection already in Section 3, only the
comparison procedure remains to be described in this section.

As a result of the first two steps, we have {PLn
: n = 0, 1, . . . , N} and

{PRn
: n = 0, 1, . . . , N} for frame t+ 1 (derived from sequences for frame t). We

     Lane detected 
{PLi, PRi, i=0,1,...,N}

     Adjustment of
{PLi, PRi, i=0,1,...,N-k}

     Detection of
{PLi, PRi, i=N-k,...,N}

Initialization
   (PL0, PR0)

     Particle filter
  {PLi, PRi, i=1,...,N}

Lane detection

Prediction from 
the former frame

Prediction from the 
former point current 
frame (        ,          )

Comparison by maximum likelihood

(0)
Li

(1)
Li

(2)
Li

(0)
Ri

(1)
Ri

(2)
RiP(      ,         )P

  Detection from 
the current frame
   (         ,          )P PP P

t=t+1

Fig. 10. Robust lane tracking scheme.
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group them into pairs (
P 1

Ln
, P 1

Rn

)
for the following process. In lane detection, when a pair of points is detected by
the particle filter on the left and right boundary at the nth tracking step, we
index this pair as (

P 2
Ln
, P 2

Rn

)
Finally, the third pair (

P 3
Ln
, P 3

Rn

)
consists of the points as detected on left and right lane boundary at the (n−1)th

step (i.e., for which we decided in the previous comparison step).
The selection of these three pairs of points has a physical meaning. The

first pair (P 1
Ln
, P 1

Rn
) is a prediction from the previous frame. The second pair

(P 2
Ln
, P 2

Rn
) combines the detected points in the current frame. The third pair

(P 3
Ln
, P 3

Rn
) is a prediction in the current frame using the previous point. As

these pairs carry information from different sources, their comparison, guided
by maximum likelihood, will tell us which one best represents the points on the
current lane boundaries.

Maximum likelihood estimation is used to judge the quality of the three pairs
of points. A likelihood function p(z|K), with z for observed features, denotes the
probability of observing a lane boundary point by the Kth pair of points, for
K = 1, 2, 3. The maximum likelihood estimation is written as follows:

P ∗ = arg max
K=1,2,3

p(z|K)

The determination of the likelihood function p(z|K) uses information about
the similarity of the width ωwidth of the lane, smoothness ωsmooth of the lane
boundary, as well as values ωdistance of the distance transform.

For the width of the lane, it is reasonable to assume that the width of a
lane at the nth tracking step is the same as at the (n − 1)th. As (P 3

Ln
, P 3

Rn
) is

predicted from the (n − 1)th pair of boundary points for smoothness reasons,
thus the similarity of width for the pair (P 3

Ln
, P 3

Rn
) is set to be 1, and the other

two pairs are compared with it. Let

WK = PK
Rn
− PK

Ln
, K = 1, 2, 3

be the width of each pair at the nth tracking step. Then,

ω1
width = a1 · exp

(
−b1(W 1 −W 3)2

)
ω2

width = a2 · exp
(
−b2(W 2 −W 3)2

)
ω3

width = 1

The smoothness weights of those three pairs are computed in an analogous way.
The smoothness of pair (P 3

Ln
, P 3

Rn
) is set to be 1, and the other two pairs are

compared with it. Let

CK = (PK
Ln

+ PK
Rn

)/2, K = 1, 2, 3



14 R. Jiang, R. Klette, S. Wang, and T. Vaudrey

be the center points at the nth tracking step. Then,

ω1
smooth = a3 · exp

(
−b3(C1 − C3)2

)
ω2

smooth = a4 · exp
(
−b4(C2 − C3)2

)
ω3

smooth = 1

Third, the values of the RODT at the points of those pairs is also used to evaluate
the possibility of finding lane boundaries:

ωK
distance = a5 · exp

(
−b5(d(PK

Ln
, ycn

) + d(PK
Rn
, ycn

))2
)
, K = 1, 2, 3

Parameters aj and bj are constants, for j = 1, 2, 3, 4, 5. The final value of the
likelihood function is calculated as follows:

P (K) = ωK
width · ωK

smooth · ωK
distance, K = 1, 2, 3

The comparison of P 1, P 2, and P 3 will select one pair as being the final detection
result at the nth step of the lane detection procedure.

5 Experiments

Experiments were conducted on images and sequences recorded with the test
vehicle “HAKA1” of the .enpeda.. project (see Figure 11). The size of images
are 752× 480 pixels.

Experimental results for lane detection are shown in Figure 12. Different
scenarios are considered. The results show that the lane detection method as
introduced in this paper works well under different situations. Note that detected
lane boundaries are sometimes locally slightly curved. This is due to the fact
that the distance transform of discontinuous lane marks is slightly unaligned in
column direction in the bird’s-eye image (see Figure 7).

The distance transform as used in this paper provides some other useful
information besides a centerline (compared to that available in the edge map).
The first example in Fig. 13 shows a case where the left lane (or road) boundary

Fig. 11. (a) The test vehicle “High Awareness Kinematic Automobile 1” (HAKA1).
(b) A stereo camera pair on a bar behind the windscreen.
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(a) (b) (c)

Fig. 12. Experimental results for lane detection. (a) Input images. (b) Lanes detected
in the bird’s-eye image. Note that red lines are the centerlines of a lane. (c) Lanes
detected in input images.

is totally occluded by parked cars. However, there are many edges of cars, or
of other objects along the left lane boundary in the bird’s-eye image. With
these edges, the RODT gives a distance map as if there are some real edges
along this boundary, as well as large distance values at centerline points. A
lane is finally detected reasonably using this distance information. The second
example in Fig. 13 illustrates a similar difficulty for detecting edges of the left
lane boundary. The experiment proves that lane boundaries can also be detected
in this case in the RODT.
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(a) (b) (c) (d)

Fig. 13. Two examples illustrating the usefulness of RODT for the detection of lane
boundaries. (a) The input image. (b) The edge map. Note that the edges in the left
boundary are far from perfect.(c) RODT of (b). The left boundary (in black) and the
centerline (in white) are clearly visible. (d) Lane detection result.

Some typical failures in lane detection are shown in Fig. 14, and these are due
to missing lane information, strong noisy edges, difficult illumination conditions,
and so on.

(c)(a) (b)

Fig. 14. Some failures of lane detection caused by missing information, noisy edges, as
well as difficult lighting conditions. The top row shows the effect with large areas of
no lane markings. The middle row shows the effect of a huge amount of noise from the
internal reflection of the windscreen. The bottom shows the issues with a mixture of
low contrast and large distances between lane marks.
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frame 0 frame 10 frame 20 frame 50

Fig. 15. Experimental results using efficient lane tracking.

frame 0 frame 10 frame 20 frame 50

Fig. 16. Experimental results using robust lane tracking.

Table 1. Computation time of lane detection and tracking.

Procedures Lane detection Efficient tracking Robust tracking
time (s) 0.144 0.137 0.148

Experimental results for periods while using the efficient lane tracking method
are illustrated in Figure 15. The results are obviously acceptable, except for some
sparse outliers at lane boundaries.

Experimental results for periods while using the robust lane tracking method
are shown in Figure 16. Compared with efficient lane tracking, this method
requires more computation time but proves to be more robust.

The computation time for lane detection and tracking is documented in Table
1 for a general comparison. The experiment was conducted using an off-the-shelf
computer (Dual core, 2.1GHz) and OpenCV without any runtime optimization.
Actually, the computation time will always be affected by several factors, such
as ∆, the forward-looking distance, number of particles, and so on.

Table 1 shows that efficient lane tracking performs relatively faster than the
robust tracking approach and the lane detection.

The computation time for the various steps of low-level image processing is
shown in Table 2. This table shows that low-level image processing consumes
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Table 2. Computation time of steps in the low-level processing part.

procedures bird’s-eye view edge detection noise remove distance transform total
time (s) 0.015 0.015 0.015 0.075 0.120

most of the computation time of our lane detection and tracking method. Among
those processing steps, the distance transform requires most of the computation
time.

6 Conclusions

This paper introduced a new weak model of a lane, and a possible lane detection
scheme using a particle filter. Furthermore, two lane tracking methods were
proposed and discussed. They focus either on efficiency or on robustness, and
can be applied under different scenarios.

A (simple and easy to calculate) distance transform was used in this paper
for lane detection and tracking. It shows that the distance transform is a pow-
erful method to exploit information in lane detection situations. The distance
transform can deal with discontinuous lane marks, provides information for the
detection of the border or centerline of a lane, finds initial values for the particle
filter, and adjusts the tracking results conveniently.
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