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Abstract—Finding a shortest path between two given locations
is of importance for mobile robots, but also (e.g.) for identifying
unique paths in a given surrounding region Π when (e.g.)
evaluating vision software in test vehicles, or for calculating the
free-space boundary in vision-based driver assistance. We assume
that Π is given as a triangulated surface which is not necessary
simply connected.

Based on a known k-shortest paths algorithm and a de-
composition of the surrounding region Π, this article presents
an approximate algorithm for computing a general Euclidean
shortest path (ESP) between two points p and q on Π, with time
complexity

κ(ε) · O(k · |V (Π)|)

and additional preprocessing in time

O(k · |V (Π)| · log |V (Π)|)

Our algorithm is suitable for approximately solving the 2D ESP
problem, the 2.5 ESP problem (i.e., the surface ESP problem,
as occurring, for example, in the free-space border application),
and even the 3D ESP problem which is thought to be difficult
even in the most basic case if all the obstacles are just convex,
or if Π is just simply connected.

I. INTRODUCTION

Shortest-path calculations have a well-known importance
for mobile robots, where shortest paths need to be calculated
in 3D space. Currently, problems of shortest (or optimum)
path calculations also occur in areas of vision-based driver
assistance [8], [19], [20]. For example, a road surface is
approximated by a 2D manifold (see Figure 1), and the
boundary of the free space needs to be calculated as an
optimum path in a space of labeled 3D positions. A non-
planar road surface model defines an example for the 2.5 ESP
problem as discussed in this paper.

Figure 2 illustrates the mapping of a road view (one of
two stereo images) into a birds-eye image; see [2] for this
mapping. The ground manifold is approximated by a (linear,
cubic B-spline, and so forth) function in y which identifies the
“zero-height” for each image row y, and thus also a disparity
dy identifying this zero-height in column y. Every detected

Fig. 1. Estimated free space assuming either a planar road (top), or a B-spline
modeled curved road surface. Courtesy of A. Wedel, see [20].

Fig. 2. Top: road view. Bottom: birds-eye view.

disparity greater than dy + δy defines an obstacle. The free-
space boundary b is an optimized path, defined for all columns



x with yx = b(x), by minimizing the energy

E(b) =
x=xmax∑
x=0

Dx(yx) + Vx(yx−1, yx, yx+1)

Start and end point (0, y0) and (xmax, yxmax
) are given from

the birds-eye image. For each column x, the data cost is de-
fined by Dx(y) = y, and the continuity cost by Vx(y1, y2, y3).

Fig. 3. Parameters in birds-eye image.

For each column x, let hx be the minimum y-coordinate
such that there is no obstacle between (x, ymax) and (x, hx).
Boundary value yx is constraint to be in [0, hx]. See Figure 3.

Fig. 4. Top: free-space in birds-eye image. Bottom: free-space in road view.

For example, by using a linear continuity term

Vx(y1, y2, y3) = |y1 − y2|+ |y2 − y3|

the continuity cost is basically (The difference in x-coordinates
is equals to 1 and constant.) the L1-length, and the intervals
[0, hx] identify the step sets (using the data term as constraint).
Thus, energy optimization may be estimated by length mini-
mization.

Figure 4 illustrates a solution - first in the birds-eye image,
and than back-projected into the road view.

The paper is structured as follows: Section II introduces
into the current situation in Euclidean shortest path algorithms
(time complexity, for 2D, 2.5D, or 3D cases). Section III pro-
vides necessary definitions and notation. Section IV presents
our algorithm and explanation of its correctness. Section V
illustrates the algorithm by a small example. Section VI
analyses the time complexity of the algorithm. Section VII
concludes the paper.

II. ESP PROBLEMS

Let Π be a polygon in 2D space (plane), and assume two
points p, q ∈ Π, with p 6= q. The task to find a shortest path ρ
between p and q, such that all the vertices of ρ are inside of Π,
is an instance of an Euclidean shortest path (ESP) problem;
it is called the 2D ESP problem.

The 2D ESP problem has some generalizations such as the
2.5D ESP problem where Π is the surface of a polytope, or
the 3D ESP problem where Π is the closure of the interior
of a connected polyhedron (which is not necessarily simple).
Obviously, ESP computation has an application in robot route
planning, but also in more specific applications as the briefly
mentioned calculation of free space in driver assistance.

Based on applying a linear (time) triangulation algorithm
for a simple polygon [4], there exists a linear algorithm (see
[17]) for solving the 2D ESP problem if Π is a simple
polygon. Also based upon triangulation, [11] describes a more
straightforward algorithm (a version of a so-called rubberband
algorithm) which has a κ(ε) ·O(n) time for the same 2D ESP
problem, where

κ(ε) = (L0 − L1)/ε

n is the number of vertices of Π, ε is the accuracy (say, the
numerical accuracy of the used computational environment,
something like ε = 10−10), L0 is the length of the initial path
and L1 is the true (i.e., optimum) path length.

The 2.5D ESP problem is more difficult to solve than the
2D problem. So far, the best known result for the surface
ESP problem is due to [7]; this paper improved in 1999
the time complexity to O(n log2n), assuming that there are
O(n) vertices and edges on Π. [10] apples a version of a
rubberband algorithm to solve the 2.5D ESP problem in time
κ1(ε) · κ2(ε) · O(n2), basically using a simpler approach
compared to [7].

For calculating an ESP on the surface of a convex polytope
(in R3), [17] states on page 667 the following open problem:

Can one compute shortest paths on the surface of a
convex polytope in R3 in subquadratic time? In O(n
log n)?



The 3D ESP problem is thought to be “very difficult”. In
1985, [18] described an algorithm for the general 3D ESP
problem in time

O(n4(L+ log(n/ε))2/ε2)

In 1987, [5] gave an algorithm for computing an (1 + ε)-
shortest path between p and q which has a time complexity
of

O(n2λ(n) log(n/ε)/ε4 + n2 log nr log(n log r))

where r is the ratio of the Euclidean distance de(p, q) to the
length of the longest edge of any given obstacle, and

λ(n) = α(n)O(α(n)O(1))

where α(n) = A−1(n, n) is an inverse Ackermann function
[14], which grows very slowly (because A grows very rapidly).

Let there be a finite set of polyhedral obstacles in R3.
Let p, q be two points outside of the union of all obstacles.
Assume that 0 < ε < 1; [6] gives an O(log(n/ε)) algorithm
to compute an (1 + ε)-shortest path from p to q such that it
avoids the interior of any obstacle. The algorithm is based on
a subdivision of R3 which is computed in O(n4/ε6).

For some special cases of 3D ESP problems, [17] states on
page 666 the following:

The problem is difficult even in the most basic
Euclidean shortest-path problem (ESP) in a three-
dimensional polyhedral domain P , and even if the
obstacles are convex, or the domain P is simply
connected.

In this paper, based on an k-shortest paths algorithm ([15])
and the decomposition (see the Definition in Section III) of
Π, we apply a version of a rubberband algorithm to present a

κ(ε) · O(kn)

approximate algorithm (described in Section IV) for 3D ESP
calculation if P is a connected polyhedron (which is not
necessarily simple), with preprocessing time complexity O(kn
log n). The algorithm has the same time complexity for the
general 2.5D surface ESP problem or the 2D ESP problem
(where Π is not necessarily a simple polygon).

III. DEFINITIONS AND NOTATION

A (surrounding) region Π of a Euclidean shortest path (ESP)
problem may be a connected closed set in 2D space (plane),
in 2.5D space (surface), or in 3D space such that Π is a union
of triangles which all have the same normal (in 2D space), a
union of triangles which may have different normals (in 2.5D
space), or a union of tetrahedra (in 3D space).

The set of such triangles or tetrahedra is called the decom-
position of Π, denoted by Πt. Each triangle or tetrahedron is
called an element of Πt, denoted by t. Let Dim(t) be the
dimension of t. Let w be the centroid of t; t is also called the
corresponding element with respect to w, denoted by t(w).

A rubberband algorithm proceeds by identifying vertices of
a path in subsequent “steps”. A step region is a closed segment

if Π is a 2D or 2.5D region, or it is a closure of the interior of
a triangle if Π is a 3D region. A step set is a finite sequence
of disjoint step regions.

Let V (Π) be the set of vertices of Π. Let V (G) be the set
of vertices of a graph G.

IV. THREE ALGORITHMS

[3] proposed a rubberband algorithm for calculating shortest
path in a 3D world subdivided into cubes of uniform size; this
algorithm was extensively studied in [9].

This section starts describing a “general” version of a rub-
berband algorithm and a k-shortest paths algorithm [15]; then
it presents the main algorithm based on these two procedures.

Algorithm 1: A “General” Rubberband Algorithm

Input: A step set {S1, S2, . . . , Sk}, where i = 1, 2, . . ., k;
two points p, q /∈ Si.

Output: An approximate (Euclidean) shortest path which
starts at p, then visits Si in order, and finally ends at q.

1: Let ε = 10−10 (i.e., this is an example of a chosen
accuracy).

2: for each i ∈ {1, 2, . . . , k} do
3: Let pi be a point in Si.
4: end for
5: Compute the length L0 of the path ρ =
〈p, p1, p2, . . . , pk, q〉.

6: Let q1 = p and i = 1.
7: while i < k − 1 do
8: Let q3 = pi+1.
9: Compute a point q2 ∈ Si such that

de(q1, q2)+de(q3, q2) = min{de(q1, q′)+de(q3, q′) :
q′ ∈ Si}.

10: Update ρ by replacing pi by q2.
11: Let q1 = pi and i = i + 1.
12: end while
13: Let q3 = q.
14: Compute q2 ∈ Sk such that

de(q1, q2)+de(q3, q2) = min{de(q1, q)+de(q3, q) : q ∈
Sk}.

15: Update ρ by replacing pk by q2.
16: Compute the length L1 of the updated path ρ =
〈p, p1, p2, . . . , pk, q〉.

17: Let δ = L0 − L1.
18: if δ > ε then
19: Let L0 = L1 and go to Step 6.
20: else
21: Output {p, p1, p2, . . . , pk, q} and Stop.
22: end if

In Algorithm 1, we let the step region Si be a closed
segment for the 2D ESP problem [11], and a closure of the



Fig. 5. Illustration of Algorithm 1: Step 3 and optimal p1.

Fig. 6. Illustration of Algorithm 1: Optimal p2 and p3.

Fig. 7. Illustration of Algorithm 1: Final optimal path.

interior of a triangle for the 2.5D or 3D ESP problem (see
also Algorithm 1 in [12] and Algorithm 4 in [13]).

Figure 5 (left) shows an initial path in Algorithm 1 when
k = 3 and each step region Si is a closed segment in a plane.
In the first iteration, we update p1 (Figure 5, right), then p2

(Figure 6, left) and finally p3 (Figure 6, right) in this order.
The final optimal path is shown in Figure 7.

We recall from [15] the following (with referring to the
source for details):

Algorithm 2: k-Shortest Paths Algorithm
Input: A weighted directed graph G = [V,E], two vertices

u, v ∈ V , and an integer k > 0.
Output: The first k shortest paths between vertices u and v.

Now we are ready to formulate the main algorithm of this
paper.

Algorithm 3: Main Algorithm

Input: Two points p and q in a closed connected region S;
the decomposition of Π, denoted by Πt, and an integer k.

Output: An approximate Euclidean shortest path ρ between
p and q inside of Π.

1: Let Πt = {tp, tq, t1, t2, . . . , tm}.
2: for each i ∈ {1, 2, . . . ,m} do
3: Compute the centroid of ti, denoted by ui.
4: end for
5: Construct a weighted directed graph G = [V,E] as

follows: Let V = {p, q, u1, u2, . . . , um}. E is defined such
that, for any wi, wj ∈ V and wi 6= wj , there exist two
weighted directed arcs, denoted by (wi, wj) and (wj , wi),
if and only if 1 Dim(t(wi) ∩ t(wj)) = Dim(t(wi)) − 1.
The weight of (wi, wj) [or of (wj , wi)] is the length
of the shortest path that starts at ui [or uj], then visits
t(wi) ∩ t(wj), and finally ends at uj [or at ui].

6: Apply Algorithm 2 to find the first k shortest paths
between p and q in G, denoted by ρ1, ρ2, . . ., ρk.

7: for each i ∈ {1, 2, . . . , k} do
8: Let wi1 , wi2 , . . ., wini

be the vertices of ρi (excluding
the starting vertex p and ending vertex q).

9: Let L = ∞ (i.e., a sufficiently large number).
10: for each j ∈ {1, 2, . . . , ni} do
11: Let Si0 = tp∩t(wi1), Sij = t(wij )∩t(wij+1), where

j = 1, 2, . . ., ni - 1, and Sini
= t(wini

) ∩ tq .
12: Let {Si0 , Si1 , Si2 , . . . , Sini

} (as a step set) and p, q as
input, apply Algorithm 1 to compute an approximate
ESP, denoted by ρ′i.

13: Let Li be the length of ρ′i.
14: if Li < L then
15: Let ρ = ρ′i and L = Li.
16: end if
17: end for
18: end for
19: Output ρ.

In Step 12, elements in step sets could be removed until
remaining step sets are all pairwise disjoint. For example, just
simply remove a sufficiently small segment from both ends of
a line segment in case of a 2D ESP problem ([11]).

In Step 5, G is called the corresponding graph with respect
to the decomposition Πt.

The correctness of Algorithm 3 follows by Theorem 2 of [12]
(or Theorem 2 in [13]).

V. AN EXAMPLE

This section illustrates some steps of Algorithm 3 under
the assumption that Π is the simple 2.5D surface as shown in
Figure 8. (A sampled cubic B-spline manifold, approximating
the road surface [20], is a real-world example for a 2.5D case.)

In Step 1, Πt = {tp, tq, t1, t2, . . . , t11}, where tp =4v1v2v5,
tq = 4v4v7v9, t1 = 4v1v5v10, t2 = 4v2v8v5, t3 = 4v1v10v4,
t4 = 4v5v7v10, t5 = 4v5v8v6, t6 = 4v2v3v8, t7 = 4v4v10v7,

1For example, ti ∈ St is the triangle corresponding to ui ∈ V , where i =
1, 2, . . ., m.



Fig. 8. Illustration of a 2.5D surface Π of Algorithm 3.

Fig. 9. Illustration for the corresponding graph G in Step 5 of Algorithm 3.

t8 = 4v6v9v7, t9 = 4v3v6v8, t10 = 4v3v9v6, and t11 =
4v3v4v8.

Figure 9 shows the corresponding graph G with respect to
decomposition Πt.

Fig. 10. Illustration for another possible corresponding graph G in Step 5
of Algorithm 3.

Figure 10 shows a possible corresponding graph G with

Fig. 11. Illustration for a step set (bold edges) obtained in Step 11 of
Algorithm 3.

Fig. 12. Illustration for another step set (bold edges) obtained in Step 11 of
Algorithm 3.

respect to decomposition Πt. Figure 10 is obtained by re-
moving two arcs (u2, u5) and (u2, u6) in Figure 9 under the
assumption that a move is not possible from u2 to u5 or from
u2 to u6.

Figures 11 and 12 show two step sets obtained in Step 11 of
Algorithm 3 from ρi = 〈p, u1, u3, u7, q〉 and 〈p, u1, u4, u7, q〉,
respectively, in Step 8 of Algorithm 3.

VI. TIME COMPLEXITY

In Algorithm 3, the main preprocessing step is Step 6 with
costs (in time) from

O(k|E|) to O(k|V | log |V |)

[15]. As each vertex of G can be at most of degree three (i.e.,
number of incident edges) if Π is in 2D or 2.5D space, and
at most of degree four if Π is in 3D space, |E| ≤ 2|V |. Thus,
Step 6 can be computed in O(k|V | log |V |). By Lemma 1
of [12], Step 12 can be computed in time κ(ε) · O(ni) ≤
κ(ε) · O(|V |). The main computation in Algorithm 3 occurs
in Steps 7–18, and those steps require κ(ε) · O(k|V |) time.
Therefore, Algorithm 3 has a time complexity of

κ(ε) · O(kn)



Fig. 13. A simple graph that has more than 2|V |−1 paths between u1 and
um.

with preprocessing in time

O(kn log n)

where n is the number of vertices of Π.

VII. CONCLUDING REMARKS

We have presented an approximate algorithm based on
a k-shortest paths algorithm and a decomposition of the
surrounding region Π for computing a general ESP between
two points p and q inside of Π, with time complexity

κ(ε) · O(k|V (Π)|)

excluding preprocessing in time

O(k|V (Π)| log |V (Π)|)

Although there exist some algorithms such as in [16] for
computing all paths between two vertices in a graph, the
time complexity of such an algorithm is exponential due to
the existence of graphs G as shown in Figure 13, which
has 2|V (G)|−1 paths between two of its vertices. Thus, in
general, the smallest upper bound for parameter k is probably
exponential.

It is known that there does not exist (!) any algorithm
for finding exact solutions for general 3D ESP problems
(see Theorem 9, [1]). Therefore, an approximate algorithm
is actually the only option to approach these problems.

Applications of the reported algorithm in driver assistance
(e.g., for the mentioned free-space problem) are currently
underway. [20] applies dynamic programming for calculating
the optimum path b, identifying the boundary of the free-
space. A run-time and accuracy comparison with the proposed
rubberband algorithm will be a subject of future work.

The authors hope that researchers in robotics may also find
it of interest to test the given algorithm for their purposes.
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