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Abstract. Real-world image sequences (e.g., recorded for vision-based
driver assistance) are typically degraded by various types of noise,
changes in lighting, out-of-focus lenses, differing exposures, and so forth.
In past studies, illumination effects have been proven to cause the
most common problems in correspondence algorithms. We address this
problem using the concept of residuals, which is the difference between an
image and a smoothed version of itself. In this paper, we conduct a study
identifying that the residual images contain the important information in
an image. We go on to show that they remove illumination artifacts using
a mixture of synthetic and real-life images. This effect is highlighted more
drastically when the illumination and exposure of the corresponding
images is not the same.

1 Introduction

This paper applies the structure-texture image decomposition [2, 16] as basic
approach for evaluating preprocessing options for image sequences, as recorded
in vision-based driver assistance systems (DAS). Currently, technologies are
introduced into the DAS market which apply stereo and motion analysis for
solving early vision tasks; see [8]. However, the improvement of those modules
will be an ongoing challenge for some time to come.

In particular, when evaluating stereo and motion correspondence algorithms
on real-world sequences as provided on [7], we realized [20] that illumination
artifacts define a major issue, causing serious reductions in accuracy of stereo
and motion data.

There might be basically two different approaches for dealing with this
problem, either we try to map both images into a uniform illumination model, or
we map both into images which carry the illumination-independent information.
After some experiments with various unifying mappings we realized that the first
approach is basically impossible (or, at least, a very big challenge), considering
that impacts of shadow are often just local (e.g., “dancing lights” caused by
sunshine through leaves along the road). Thus we moved on to the second
approach, and this paper actually shows that this is a very promising direction
of research.



Fig. 1. Example decomposition of RubberWhale image (top) into its smooth (left) and
residual (right) components (example using TV-L2).

For this second approach, we picked up the concept of residuals [11], which is
the difference between an image and a smoothed version of itself, and generalized
it by applying not only the mean operator for smoothing, but also various
smoothing operators as known from past and very recent studies in computer
vision. (This also includes a small modification of an operator proposed in [12].)

Let f be an image with an additive decomposition f(x, y) = s(x, y)+r(x, y),
for all pixel positions x = (x, y), where s = S(f) denotes the smooth component
(of an image) and r = R(f) = f − S(f) the residual. The residuum is not
a (standard) image because it may also contain negative values. See Figure 1
for an example of such a decomposition. We use the straightforward iteration
scheme:

s(0) = f

s(n+1) = S(s(n))
r(n+1) = f − s(n+1)

for n ≥ 0.1 Co-occurrence matrix [9] based information measures are used to
characterize information in s(n) and r(n), for n ≥ 1.

This paper conducts a study identifying that the residuals r(n) contain
the important information in an image. We go on to show that they remove
1 However, we could also have used r(n+1) = s(n)−s(n+1), or even a different iteration

scheme with r(0) = f and s(n+1) = S(r(n)), with r(n+1) = r(n) − s(n+1), for n ≥ 0.
This might be a subject for further studies



illumination artifacts using a mixture of synthetic and real-life images. This
effect is highlighted more drastically when the illumination and exposure of the
corresponding images is not the same.

In this paper we first introduce the chosen smoothing operators in Section 2.
This is followed by an overview of the data set we use. We go on to show that
the smoothed image s is a good approximation for a low-pass filter, and go on
to show that the residual image r does contain the high-frequencies required for
correspondence matching (Section 4). Section 5 proposes a methodology to test
if the illumination artifacts are, in fact, improved using residuals, then provides
results using the proposed methodology. A conclusion and acknowledgments
finalise this paper.

2 Smoothing Operators

Let f be any frame of a given image sequence, defined on a rectangular open
set Ω and sampled at regular grid points within Ω. Technically, we assume that
f is a two-dimensional (2D) function in L2(Ω) (i.e., informally speaking, square
integrable on Ω), which defines a surface patch above Ω, whose contents (i.e.,
area) equals

∫
Ω
|∇f |.2 This integral of the gradient ∇f of f is also called the

total variation (TV) of f .
[16] assumed an additive decomposition f = s+ r into a smooth component

s and a residual component r, where s is assumed to be in L1(Ω) with bounded
TV (in brief: s ∈ BV), and r is in L2(Ω). This allows one to consider the
minimization of the following functional:

inf
(s,r)∈BV×L2∧f=s+r

(∫
Ω

|∇s|+ λ||r||2L2

)
(1)

The TV-L2 approach in [16] was approximating this minimum numerically for
identifying the “desired clean image” s and “additive noise” r. Actually, further
studies (see [2]) then identified s to be the “structure”, and r to be the “texture”.
See Figure 1 for an example of such a TV-L2 decomposition.

The concept may be generalized as follows: any smoothing operator S
generates a smoothed image s = S(f) and a residuum r = f − S(f). For
example, TV-L2 generates the smoothed image s = STV (f) by solving Equ. (1).
For example, s may also be the result of an ideal low-pass Fourier filter, and
r would then be the result of the dual ideal high-pass Fourier filter (due to
additivity of the Fourier transform).

Note that the residuum is not a (standard) image because it may also contain
negative values; r will be normalized later in this paper into a 2D function with
values in [0,1]. (We may also use a residual operator R with r = R(f) = f−S(f);
but, obviously, S and f already define both the low-frequency term s and the
high-frequency term r.)

2 In case of a 1D function f ,
R
Ω
|∇f | =

R b
a
|f ′(x)| dx equals the length of the curve

f(x), for x ∈ Ω = [a, b].



The concept of residual images was already introduced in [11] by using a 3×3
mean for implementing S. We will include this simple smoothing operator Smean
into our discussions in this paper. Figure 1 in [11] characterizes the histogram
of a residuum r = f − Smean(f) as being a Laplacian distribution of values.

Smedian is another simple smoothing operator, defined by the m ×m local
median operator. Furthermore, the study [1] on comparing edge-preserving
smoothing filters points to the (double-window) trimmed mean operator as
introduced in [12]; we use the base principals of this for the trimmed mean
filter STM . This smoothing operator uses a m×m window, but only calculates
the mean only for all pixels with values in [a−σf , a+σf ], where a is the central
pixel value and σf is the standard deviation of f . Finally, we also include the
bilateral [19] and the trilateral filter [5], defining smoothing operators SBL and
STL.

In the bilateral case, offset vectors a and position-dependent real weights
d1(a) define a local convolution, and the weights d1(a) are further scaled by a
second weight function d2, defined on the differences f(x + a)− f(x):

s(x) =
1

k(x)

∫
Ω

f(x + a) · d1(a) · d2 [f(x + a)− f(x)] da (2)

k(x) =
∫
Ω

d1(a) · d2 [f(x + a)− f(x)] da

Function k(x) is used for normalization. In this paper, weights d1 and
d2 are defined by Gaussian functions with standard deviations σ1 and σ2,
respectively. The smoothed function s equals SBL(f). The bilateral filter requires
a specification of parameters σ1, σ2, and the size of the used filter kernel in f .

The trilateral case only requires the specification of one parameter; it
combines two bilateral filters. At first, a bilateral filter is applied on the
derivatives of f (i.e., the gradients):

gf (x) =
1

k∇(x)

∫
Ω

∇f(x + a) · d1(a) · d2 (||∇f(x + a)−∇f(x)||) da (3)

k∇(x) =
∫
Ω

d1(a) · d2 (||∇f(x + a)−∇f(x)||) da

Simple forward differences

∇f(x, y) ≈ (f(x+ 1, y)− f(x, y), f(x, y + 1)− f(x, y))

are used for the digital image. For the subsequent second bilateral filter,
[5] suggested the use of the smoothed gradient gf (x) [instead of ∇f(x)] for
estimating an approximating plane

pf (x,a) = f(x) + gf (x) · a (4)

Let f4(x,a) = f(x + a)− pf (x,a). Furthermore, a neighborhood function

n(x,a) =
{

1 if ||gf (x + a)− gf (x)|| < A
0 otherwise (5)



is used for the second weighting. A specifies the adaptive region and is discussed
further below. Finally,

s(x) = f(x) +
1

k4(x)

∫
Ω

f4(x,a) · d1(a) · d2(f4(x,a)) · n(x,a) da (6)

k4(x) =
∫
Ω

d1(a) · d2(f4(x,a)) · n(x,a) da

The smoothed function s equals STL(f).
Again, d1 and d2 are assumed to be Gaussian functions, with standard

deviations σ1 and σ2, respectively. The method requires to specify parameter
σ1 only, which is at first used to be the radius of circular neighborhoods at x in
f ; let gf (x) be the mean gradient of f in such a neighborhood. Let

σ2 = 0.15 · ||max
x∈Ω

gf (x)−min
x∈Ω

gf (x)|| (7)

(Value 0.15 was recommended in [5]). Finally, also use A = σ2.

Numerical Implementation
Above we have defined the smoothing filters. All filters have been implemented
in OpenCV [15], where possible the native function was used.3.

For the TV-L2, we use an implementation (with identical parameters) as in
[21]. All other filters used are virtually parameterless (except a window size)
and we use a window size of m = 3 (σ1 = 3 for trilateral filter). The only other
parameter to set is the bilateral filter color standard deviation σ1 = 0.1 Irange,
where Irange is the range of the intensity values.

3 Data Sets

For this paper we illustrate our argument with the Middlebury dataset [13]. We
use both the optical flow data set and the stereo data sets. We split these into
two main datasets.

Data Set 1
These are the “good quality” low noise images. They are either synthetically
generated, or use good lighting and cameras with good optics. They are also
using the same lighting conditions and camera exposures. Specifically, this set
includes the 2001 stereo set (provided by [18]): Barn1, Barn2, Bull, Map, Poster,
Sawtooth, Tsukuba, and Venus. It also includes the optical flow set to show how
both types of correspondence algorithms have the same issues. The optical flow
set (provided by [3]) were used when ground truth was available, specifically:
Dimetrodon, Grove2, Grove3, Hydrangea, RubberWhale, Urban2, Urban3, and
Venus. The total dataset is 8 for stereo and 8 for optical flow.

Data Set 2
3 See acknowledgments for numerical implementations.



These are the images that differ in both illumination and exposures. This
highlights the major importance to think of removing illumination artifacts. We
include both the 2005 and 2006 data sets (provided by [10, 17]). The datasets
have 3 different exposures and 3 different illuminations (for both the left and
right images). This enables us to test the intensity consistency assumption under
extreme conditions. Again, we only use images with ground truth available.
For the 2005 set, that includes: Art, Books, Dolls, Laundry, Moebius, and
Reindeer. For the 2006 set: Aloe, Baby1-3, Bowling1-2, Cloth1-4, Flowerpots,
Lampshade1-2, Midd1-2, Monopoly, Plastic, Rocks1-2, and Wood1-2.

We are now no longer interested in “good quality” image pairs. We therefore
only use images with differing exposure and illumination. To do this, for each
image pair, we keep the left image with illumination = 1 and exposure =
0 (as defined by [13]). But for the right image, we make use of all all the
differing illumination (1, 2, 3) and exposure (0, 1, 2) settings (excluding the
exact same illumination = 1 and exposure = 0). This is a total of 8 different
illumination/exposure combinations, for each image pair. That brings the total
number of comparative data to 224 (28 × 8).

4 Residual Images Contain the Important Information

This section demonstrates that the important information for correspondence
algorithms is contained in the residual image r. The residual image is, in fact,
an approximation of the high frequencies of the image, and the smoothed image
s is an approximation of a low-pass filter. Obviously, by iteratively running a
smoothing filter, you will get a more and more smoothed image (i.e., you will
be getting lower and lower frequencies). The following subsections demonstrate
this well-known fact, but also that (or: how) the residual images still contain the
high-frequency image. The texture is in effect the high frequencies of the image.

4.1 Co-occurrence Matrix and Metrics

The co-occurrence matrix has been defined for analysing different metrics about
the texture of an image [9]:

C(i, j) =
∑
x∈Ω

∑
a∈N\{(0,0)}

{
1, if h(x) = i and h(x + a) = j
0, otherwise (8)

where N + x is the neighbourhood of pixel location x, a 6= (0, 0) is one of the
offsets in N , and 0 ≤ i, j ≤ Imax (maximum intensity). h represents any 2D
image (e.g., f , r, or s). All images are scaled min ↔ max for utilizing the full
0↔ Imax scale.

In our experiments we chose N to be the 4-neighbourhood, and we have
Imax = 255. The loss in information is identified by the following (common)



metrics,

Homogeneity: Thomo(h) =
∑
i j

C(i, j)
1 + |i− j|

(9)

Uniformity: Tuni(h) =
∑
i j

C(i, j)2 (10)

Entropy: Tent(h) = −
∑
i j

C(i, j) lnC(i, j) (11)

(T = textureness metric) where an increase in homogeneity represents the image
having more homogeneous areas, an increase in uniformity represents more
uniform areas, and a decrease in entropy shows that there is less information
contained in the image.

4.2 Results of Co-occurrence Metrics

If we repeatedly smooth an image (using one of the operators as defined in
Section 2) the expected behaviour is to drastically reduce the information
(high-frequencies) of the image, as that is what smoothing filters are designed
to do. Furthermore, the residual of an image is an approximation of the high
frequencies of the image, so should not reduce the information. The following
results show this in practice.

The following graphs and explanations are based on iteratively applying a
smoothing filter to Data Set 1 defined in Section 3. To get a better representation,
we scaled each result by the original image’s metric, i.e., T (s)/ |T (f)|, and then
average the results for all data (at the specific iteration). The effect of this can
be seen in Figure 2, for all the smoothing operators as specified before in this
paper.

In this figure it shows that the more iterations performed on an image, the
more homogeneous and uniform it becomes. Furthermore, there is a decrease
in entropy. All three metrics show that there is a rapid loss of high frequencies
initially, and this effect reduces after some time. Some filters come to a steady
state (e.g., median and trilateral), some come to a small steady increase (e.g.,
TV-L2 and trimmed mean), and others behave poorly (e.g., bilateral and mean
filter). The main point to note is that all the selected smoothing filters reduce
information rapidly.

The residual of an image is an approximation of the high frequencies of the
image. Therefore, the information contained in a residual image should be less
effected (of course, with any filtering process you are changing the information).
The co-occurrence metrics were performed on the residual images (after a number
of smoothing iterations), the results are shown in Figure 3. Again the results are
for the Data Set 1 so each result is scaled, i.e., T (r)/ |T (f)| and the graph shows
the average of all results (at the specific iteration).

In the homogeneity graph of this figure, it can be seen that the residual
images are in fact less homogeneous than the original image (except for median,



which has a slight information loss, and trilateral that increases over time). This
could be accounted for by introducing small amounts of (random) noise over
the entire image. Note that the mean filter approaches the original graph, this
is expected as eventually the mean filter will approximate to a uniform scale
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Fig. 2. Average homogeneity, uniformity, and entropy (top to bottom) of a smoothed
image s, averaged over Data Set 1. Shows the reduction of information when repeatedly
iterating a filter, for the selected dataset and smoothing operators.



change by the mean of the entire image. Furthermore, the TV-L2 and median
filter seems to be more stable than the rest (i.e., not having much range), but
the others stabilize very quickly (except the trilateral which increases).
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Fig. 3. Homogeneity, uniformity, and entropy (top to bottom) of a residual image r,
averaged over Data Set 1. Shows that the effect of repeatedly iterating a filter (taking
the residual) on an image does not necessarily reduce the information. (Note: trilateral
and median filter not shown on uniformity graph because of large magnitude).
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Fig. 4. Outline of the methodology used to compare images.

The first thing noticeable about the uniformity graph is that there is no
trilateral or median filter. This is because they are much larger in magnitude;
the median filter ranges are 30 ≤ 50 and the trilateral filter ranges are 27 ≤
32. In saying this, the other algorithms (except mean filter) are within similar
magnitudes of the original image (if not better), showing that the information
is not lost, or only slightly reduced.

The entropy graph shows similar results to the uniformity graph. Most
algorithms are within a small band around the original image, except the median
filter which is much lower.

5 Removing Illumination Artifacts with Residual Images

Correspondence algorithms usually rely on the intensity consistency assumption,
i.e., that the appearance of an object (according to illumination) does not
change between the corresponding images. A previous study has suggested (by
experimental data) that illumination artifacts propose the biggest problem for
correspondence algorithms [14]. However, this does not hold true when using
real-world images, this is due to, for example, shadows, reflections, differing
exposures and sensor noise. We show that the errors from residual images are
lower than the errors obtained using the original images. The process for showing
this is highlighted in Figure 4. Details about the process are in the following
sub-sections. For every set of test data, the filters were iteratively applied.

5.1 Image Warping

One way to highlight this (i.e., that the errors from residual images are lower
than the errors obtained using the original images) is to warp one image to the
perspective of the other (using ground truth) and compare the differences. The
forward warping function W is defined by the following:

W
(
h1(x, t1, c1),u(x, h1, h2)

)
= w

(
x + u(x, h1, h2)

)
(12)

where h(x, t, c) is the value of an image (e.g., f , r, or s) at 2D pixel position
x ∈ Ω, at time t (image sequences) from camera c (multiple cameras, e.g., stereo),



and u is the 2D ground truth warping (remapping) vector from h1 = h(x, t1, c1)
to the perspective of h2 = h(x, t2, c2). Subscripts 1 and 2 on t and c represent
either two different time frames or cameras.

The simplest example is the stereo case, where t1 = t2 = t, c1 is the left
camera, c2 is the right camera, and u is the ground truth disparity map from
left to right (all vertical translations would be zero). Another common example
is optical flow, where c2 = c1 = c, t1 = t, t2 = t + 1, and u is the ground truth
flow field from t to t + 1. In practice, this is done using a lookup table using
interpolation (e.g., bilinear or cubic).

5.2 Image Scaling

For the purposes of this paper, f is discrete in the functional inputs (x, t, and c),
but continuous for the value of f itself. For a typical grey-scale image (Imax =
2n − 1), n is usually 8 or 16. However, we find it easier to represent image data
continuously by −1 ≤ f(x) ≤ 1 with f(x) ∈ Q2, which takes away the ambiguity
for the bits per pixel, as any n-bits per pixel image can be scaled to this domain.

Therefore, s will also be −1 ≤ s(x) ≤ 1 with s(x) ∈ Q2. However, the residual
images r are in the range −2 ≤ r(x) ≤ 2 with r(x) ∈ Q2, but in practice the
upper and lower magnitude are much less than 1. For better comparison, we
scaled the residual images by (maxx∈Ω |r(x)|)−1 to bring them into the scale
−1 ≤ r(x) ≤ 1.

5.3 Error Images

An error image e is the absolute difference between two images,

E(h1, h2) = e with e(x) = |h1(x)− h2(x) | (13)

h1 and h2 can be any two images. For this paper, the error image is between h2

and the warped W (h1); see Figure 5 for an example.

5.4 Error Metrics

To assess the quality of an image, there needs to be an error metric. A common
metric is the Root Mean Squared (RMS) Error, defined by

RMS(e) =

√
1
N

∑
x∈Ω

(
e(x)2

)
(14)

where N is the number of pixels in the (discrete) non-occluded image domain Ω
(when occlusion maps are available).

The standard RMS error gives an approximate average error for the entire
signal. The problem with this metric is that it gives an even weighting to
all pixels, no matter the proximity to other errors. In practice, if errors are
happening in the same proximity, this is much worse than if the errors are



randomly placed over an image. Most algorithms can handle (by denoising or
such approaches) small amounts of error, but if the error is all in the same area,
this is seen as signal.

We have defined a more appropriate error to take the spatial properties of
the error into account. This Spatial Root Mean Squared Error (Spatial-RMS) is
defined by

RMSS(e) =

√
1
N

∑
x∈Ω

(
G
(
e(x)

)2) (15)

where G is a function that propagates the errors in a local neighbourhood N .
For our experiments, we chose a Gaussian error propagation using a standard
deviation σ = 1.

5.5 Results on Data Set 1

For this section we again use the Middlebury dataset defined in Section 3. A
qualitative example of error images e can be seen in Figure 5. The image is from
[3], and has ground truth available (warping from t to t+ 1). In this figure, the
image from time t is warped using the ground truth to establish an error map.
This highlights that even in relatively good lighting conditions, the differences
in intensity between the two images still has a high amount of error (left image).
The error image using the TV-L2 residual (right) may appear to have more error
but, in fact, it shows that the error is more evenly spread. Sections to notice are
areas of shadow (e.g., around the wheel, in the arch and next to the curtain) and
also object boundaries (look at the difference in errors of any object boundary).
Furthermore the magnitudes of the maximum errors are less; the left image is
1.33 and the TV-L2 residual image is 1.12.

A quantitative evaluation over the entire Data Set 1 has been performed.
Again we evaluate the effect of repeated iterations of the smoothing filters, to

Fig. 5. Example error image using RubberWhale (see Figure 1 for original image). Left
image shows the error between the warped W (f(·, t, ·)) and f(·, t + 1, ·), i.e., normal
intensity images. Right image shows error between W

`
rTV (·, t, ·)

´
and rTV (·, t+ 1, ·),

i.e., the residual images using TV-L2 (white ⇔ black ≡ 0 ⇔ maxx∈Ω(e)).



obtain a residual image. The graphs in Figures 6 and 7 show the average RMS
and Spatial-RMS for the optical flow dataset and stereo dataset separately. This
was to show that although the stereo and optical flow algorithms appear to be
quite different (and have differing communities following each), they both suffer
from the same correspondence issue and use intensity consistency as their input
data.

At a first glance it is obvious that all graphs are similar. There is only a subtle
difference in the magnitude of each. The main point to notice is that all residual
images get better RMS and Spatial-RMS than the original images after around
20 iterations. Another interesting point to note is that the Spatial-RMS shows
similar information to the RMS graph. This may be because the propagation
method was not good, or that the even distribution of error (when using residual
images) seems to offset the large clusters of errors in the original error images.

From these graphs alone we can not decide which technique is the best, but if
we use the graphs from Section 4, we obtain more information about the filters.
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Fig. 6. RMS for each iteration. The top and bottom graph represents the average over
Data Set 1 stereo and flow data, respectively.
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Fig. 7. Spatial RMS for each iteration. The top and bottom graph represents the
average over Data Set 1 stereo and flow data, respectively.

From the graphs in Figures 6 and 7 it appears that median filtering is the best,
however, if we look at Figure 3, the information in the median filter residual
is being lost! So this improvement is probably due to the loss of information,
rather than the matching error.

So, if we only consider the filters that do not lose information (i.e., TV-L2,
bilateral, and trimmed mean) we can see how they rank. TV-L2 shows very good
results, on average outperforming both the bilateral and trimmed mean filter.
However, after a number of iterations, the difference is not that much. From a
computational point of view, less iterations is desirable so this may make the
TV-L2 filter much better.

The other filters to consider are the mean and trilateral filter. These two filters
retain information at low iterations (< 10 for trilateral and < 3 for mean). Both
these filters provide good results for the RMS metrics, when at low iterations.



5.6 Results on Data Set 2

In the previous subsection we have already pointed out that the results for
illumination differences is improved using residual images. We now show that
these results get even better when illumination is a major issue (not just a
minor one). We provide results similar to the previous subsection, but instead
use Data Set 2.

The results can be seen in Figure 8. Note: for these results, the trilateral
filter was stopped at iteration 10. It is immediately obvious that the original
images are far worse than residual images, around 3 times worse on average.
The second point to note is that the residual image graphs are almost identical,
in magnitude and shape to the results provided in the previous subsection (i.e.,
Data Set 1). This again highlights that with extremely different exposures and
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Fig. 8. Average RMS (top) and Spatial-RMS (bottom) for each iteration. The result
shown is the average over Data Set 2. Notice the huge benefit of using residual images.



illuminations, the residual images provide the best information for matching.
Another point to note is that the mean filter still approaches the same RMS as
in the previous subsection. This means, that even doing a simple mean balancing
between images, you can remove a lot of artifacts, but using the residual images
is still much better.

Since most of the filters stabilize around iteration 40 (TV-L2, trimmed mean,
bilateral, and median), we have presented statistical results of the RMS after
this number of iterations. The trilateral and mean filter were not very stable,
so we chose to perform the statistics after 1 iteration. These results are shown
in Table 1. You can see from these results that all the statistics for the original
images are higher than any of the filters. The mean, trilateral, and median
filter seem to be the most robust; showing the lowest range and standard
deviation. The TV-L2, mean, and median filters have the best average. The
timing information provided in this table is the average time per iteration, on
two sizes of images (450 × 370, 752 × 480 pixel resolution), this is to highlight
the scalability of the filters.

6 Conclusions and Future Research

We recalled several smoothing algorithms and the concept of residuals. We then
showed that the information is still contained in the residual images (most of the
time), and lost in the smoothed images. This leads us onto testing the residual
images against illumination differences.

For the relatively “good quality” images (Data Set 1), we showed that you
improve your results using a residual image. Furthermore, the errors are spread
more evenly over the image, reducing the effect of outliers. We then showed
that the results using residual images are extremely effective when using images
where the exposure and illumination are different.

From these studies, we conclude that a simple mean filter may produce
sufficient (and possibly the best) residual images. The TV-L2 filter is also a

Time/iteration (ms)
Filter Average Min. Max. Range Std. Dev 470× 370 752× 480

Original 0.282 0.072 0.637 0.565 0.136 - -
TV-L2 0.080 0.038 0.180 0.142 0.030 30 60
Trimmed Mean 0.090 0.053 0.143 0.090 0.023 30 100
Mean 0.055 0.023 0.120 0.096 0.023 1 1.5
Median 0.041 0.015 0.126 0.111 0.022 7 15
Bilateral 0.086 0.046 0.163 0.117 0.026 160 340
Trilateral 0.085 0.056 0.125 0.069 0.017 5000 11000

Table 1. Statistics for the RMS evaluation of the filters (average, minimum, maximum,
range, and standard deviation), after 40 iterations (TV-L2, trimmed mean, median and
bilateral filter) and 1 iteration (mean and trilateral filter). Statistics are for Data Set 2.
Average running times per iteration are also included (right) for two image resolutions.



good candidate as it retains information in the residual image, but still improves
results. The median filter and trilateral filter appear to be good when looking
at RMS, but there is information loss associated with this. The trimmed mean
and bilateral filter work well, but not as good as the other filters, so perhaps are
better suited to other applications.

Candidates for further studies are the varying weight trimmed mean filter
[23], the Kuwahara filter in [4], and the TV-L1 (i.e., TV-norm minimization
using the L1 norm) filter of [16]. (See [6] for a comparison of the bilateral with
the TV-L1 filter.)

Furthermore, the results from this test need to be compared using a
correspondence algorithm. A small study has been conducted using the TV-L1

optical flow (see [21, 22]), but more investigation needs to be done, including the
application to a stereo algorithm.
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