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Abstract. An important component of driver assistance systems (DAS)
is lane detection, and has been studied since the 1990s. However, improv-
ing and generalizing lane detection solutions remains to be a challenging
task until recently. A (physical) lane is defined by road boundaries or var-
ious kinds of lane marks, and this is only partially applicable for modeling
the space an ego-vehicle is able to driving in. This paper proposes a con-
cept of a (virtual) corridor for modeling this space. A corridor depends
on information available about the motion of the ego-vehicle, as well as
about the (physical) lane. This paper suggests robust corridor detection
using hypothesis testing based on maximum a posterior (MAP) estima-
tion. Then, boundary selection and road patch extension are applied
as post-processing. Furthermore, a simple but efficient corridor tracking
method is also discussed. This paper also informs the readers about ex-
periments using images of some challenging road situations illustrating
the usefulness of the proposed corridor detection and tracking scheme.
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1 Introduction

Lane detection plays a significant role in driver assistance systems (DAS), as
it may help to estimate the geometry of the road ahead, as well as the lateral
position of the ego-vehicle on the road. Lane detection is used in intelligent cruise
control, for lane departure warning, road modeling, and so on. Lane detection
has been widely studied for driving on a freeway [4, 12] or an urban roads [16],
for single [4, 17] or multiple [1, 13] lanes, with [2] or without [18] marks, based
on region (texture [21] or color [5]) or edge [14] features. Various models have
been applied to describe the borders of a lane, such as piecewise linear segments
[14], clothoids [4, 12], parabola [7], hyperbola [19, 11], splines [17, 18], or snakes
[18, 20]. Several lane detectors have been implemented and named in literature,
such as GOLD [2], SCARF [5], RALPH [15], MANIAC [6], or LANA [10, 11].

Typically, lane detection or lane tracking is used for localizing lane boundaries
in given road images, and based on physical road features. This is sometimes
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insufficient to model the road in front of the ego-vehicle for driving assistance,
such as in the case of a lane changing. An understanding of the road area that is
driven through is of great importance for driver assistance. This paper introduces
a new concept named “corridor” to model the space the ego-vehicle is expected
to drive through. A corridor is defined as a road patch in front of the ego-vehicle
that will be driven through shortly, with a width which is a bit wider than the
known width of the ego-vehicle (see Figure 1). Compared with a lane, a corridor
is only partially defined by physical road boundaries or lane marks, and also by
the state of the ego-vehicle, such as driving direction and lateral position with
respect to road boundaries.

Fig. 1. Comparison of lanes and corridors. (a) Original images (top and bottom). (b)
Lanes (red lines). (c) Corridors as defined in this paper (green section).

This newly proposed concept allows one to specify an innovative corridor
detection method which can deal with road situations: such as variable road
width, non-parallel lane boundaries, non-existing or invisible lane marks, lane
changings, and some difficulties caused by illumination. The detection problem of
a corridor is identical to the detection of corridor boundaries. Instead of modeling
both left and right boundaries (so far, in lane detection they are commonly
assumed to be parallel), that boundary, either left or right, which is detected best
(with respect to some optimality characteristics) is chosen in the new method
as a guide. This paper also suggests a post-processing method for road patch
extension, which identifies a corridor of “sufficient” space in front of the vehicle.
Finally, a simple and efficient method is used to track a corridor through a
sequence.

This paper is structured as follows: Section 2 introduces our new concept
of a corridor, and compares differences with the concept of a lane. Section 3
explains a robust corridor detection method using hypotheses testing based on
MAP estimation.
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Section 4 explains the tracking method. Experimental results are presented
in Section 5. Finally, our conclusions are stated in Section 6.

2 Definition of a corridor

A (physical) lane is regarded as an area on the road surface that is completely
confined by road boundaries or lane marks. For example, [3] defines a lane by cri-
teria or hypotheses all depending on those features of the real road. This common
approach for identifying a lane critically depends on the detection of physical
features, and it is, however, insufficient in situations where feature detection or
interpretation is difficult (or simply impossible). We aim at understanding the
road area also in situations where physical features are insufficient to identify a
lane.

Lane detection is not always identifying the correct road area if this process
does not yet incorporate “explanations” for detected lane boundaries. For exam-
ple, when the ego-vehicle is changing lanes [see Fig. 1, top of (b)], there are two
lanes in front of the vehicle, and the ego-vehicle is driving partially on each of
them. Another example is when there is none, or only one lane boundary, and
it is difficult to tell where the lane is in such a case, just based on visible road
features [see Fig. 1, bottom of (b)].

Ego-vehicle

Road boundary

Front wheels Driving direction

Corridor: constant 
width road patch

Start points

Intersection point

Fig. 2. Illustration for the corridor definition. The corridor should be of constant width,
as far as lane boundaries and expected driving directions allow to identify such a road
patch in a birds-eye view of the road.

A corridor (see Fig. 2) is a road patch in front of the ego-vehicle that will be
driven through shortly. Instead of totally determining by physical lane bound-
aries or lane marks, the driving direction and the lateral position of the ego-
vehicle are also taken into account. In order to identify sufficient driving space
for the ego-vehicle, the width of a corridor is chosen to be a bit larger than that
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of the ego-vehicle. The corridor starts at the current position of the ego-vehicle
(defined by lateral position on the road, driving direction, and width of ego-
vehicle). When this initial road patch of constant width hits a road boundary
or lane marks at intersection point (see Fig. 2, intersection point), then it will
smoothly bend accordingly, to follow those physical features defined by the min-
imum deviation from the original direction. In this way, the corridor is partly
decided by physical road features, and partially by the state of the ego-vehicle.
Two examples of detected corridors are shown on the right in Fig. 1.

For the detection of a corridor we may combine methods as already available
for detecting a lane and for analyzing the ego-vehicle motion. For initialization,
we need two start points (see Fig. 2 for the definition of both start points, left
and right of the ego-vehicle) and a search direction (see Fig. 2 for the driving
direction which initializes the search direction).

Section 3 and Section 4 specify a possible method for corridor detection and
tracking.

3 Robust corridor detection

For the detection of a corridor we have to identify a road patch in front of the
ego-vehicle by its geometric boundaries. Figure 3 illustrates the overall flow of
the proposed algorithm with an example.

Fig. 3. Illustration of the proposed corridor detection algorithm. (a) Input image. (b)
Birds-eye-view image. (c) Edge map of the birds-eye-view image. (d) Detected left
and right boundaries (red lines). (e) Boundary selection. (f) Smoothing of corridor
boundary using a sliding mean. (g) Projection of the boundary into the input image.
(h) Identified road patch (i.e., the corridor in green).

The algorithm starts with mapping the input image into a birds-eye-view per-
spective view. A low-level image processing method, as introduced in [2], is then
adopted to detect edges in the birds-eye-view image. Next, MAP-based hypothe-
ses testing is conducted to detect points on left and right corridor boundaries
separately, applying constraints based on information about the edges in the
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birds-eye-view image as well as about the car’s state. After that, a comparison
between these two boundaries will select the one with the better characteristics.
Points on the selected corridor boundary are then smoothed by a sliding mean,
and then back-projected from the birds-eye-view image into the input image, as
the input image is more suitable for presentation to the driver. Finally, using a
road patch extension based on the identified boundary, a corridor is produced
which is in front of the ego-vehicle, with controllable patch width defined by the
width of the ego-vehicle.

3.1 Birds-eye-view mapping

As in [8, 9], a four-points correspondence is used for the mapping from the input
image into the birds-eye-view image. We use the locally planar ground plane
assumption for this mapping. An important reason for using a birds-eye-view
mapping is that the driving direction is (basically) vertical in the birds-eye-view
image.

Fig. 4. Birds-eye-view mapping. (a) Input image. (b) and (c) are birds-eye-view images
based on different distance definitions. Four-points correspondence (points shown in
red) is established in a calibration stage; the driving direction (see the arrows) is
always vertical in the generated birds-eye-view image.

The mapping is achieved by selecting four points when calibrating the ego-
vehicle’s camera(s), and by using the locally planar ground plane assumption.
The four points from the input image are in driving direction such that they
would form corners of a rectangle in the birds-eye-view image (see Fig. 4) and
make sure that the driving direction is vertical. In this way, the birds-eye-view
image provides a clear indication of the driving direction of the ego-vehicle.
Another benefit of the birds-eye-view image is that a used distance scale can
be adjusted by selecting different sets of four correspondence points (i.e., by
scaling the “length” of the rectangle). This proved to be useful for detecting
discontinuous lane markers as well as for further forward looking situations.
Also, lane marks in the birds-eye-view image have a constant width, which may
be used for for edge detection in low-level image processing [2].
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3.2 Corridor detection using MAP-based hypotheses testing

The procedure for detecting a corridor is composed of three stages: initializa-
tion, prediction, and hypotheses testing. After initialization (at the selected start
points), we will not continue with searching scanline by scanline in the original
image (as in [22]) or with an inverse-perspective-mapped image (as in [16]); we
search for potential corridor boundary points in the initialized driving direction,
using a fixed distance interval in the birds-eye-view image. Doing so proved to
be convenient, also due to the fact that the lateral position and the distance of
points from the ego-vehicle in the birds-eye-view image are already known due
to calibration.

Individual steps of the procedure predict three points, using the previously
detected points. Then, a search region S is used with fixed width, centered at a
predicted point; hypotheses testing of pixels in the search region S uses MAP
estimation. In this way, each predicted point leads to a detected point at the
corridor boundary, with a maximum a posterior probability in driving direction.
The distance threshold in front of the ego-vehicle (for corridor definition) can
easily be controlled, and is regarded as the forward looking distance limit.

Initialization. The selection of the first point on a boundary is a difficult
task when initializing a lane detection process. As in [16], a particle filter is
applied for the search of this first point. Note that one of the main difference
between corridor and lane detection is that a start point is predefined in corridor
detection.

In the initialization stage, lateral positions of potential boundary points are
assigned to the defined two start points (see Fig. 2), which are determined based
on calibration results. The distance between these two start points is assumed
to be larger than that between both front wheels. This initializes the search
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Fig. 5. At the prediction stage, three points X1, X2, and X3 are generated using the
previously detected black points.
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for the corridor, but not for the lane. Furthermore, based on calibration, a few
more initial points (in driving direction from the start points) are predefined
(at constant distance increments 4) to ensure that the following prediction may
work.

Prediction of corridor boundary points. In our definition of a corridor
we assumed a smooth boundary. We will ensure this by using the sliding mean
(see below). Based on the smooth boundary, the following procedure can be
used to predict potential boundary points by using previously detected ones.
For robustness, three points are predicted in each step using different previously
detected ones. Xn(un, vn) denotes a detected lane boundary point at the nth
interval in driving direction, where values vn increase with assumed step size
4, and only un needs to be determined, for every Xn. In order to obtain the
three boundary points Xn+1, we use three predictions Xi

n+1 = (ui
n+1, vn+1), for

i = 1, 2, 3, as follows (see Fig. 5):

u1
n+1 = 2un − un−1

u2
n+1 = 2un−1 − un−3

u3
n+1 = 2un−2 − un−5

Global distance scaling (based on the used rectangle) in the birds-eye-view can
be achieved by modifying the parameter triangle. The prediction method has the
same effect, and can be used to detect discontinuous road features. Experiments
showed that this prediction method may also generate irrelevant outliers, and
thus we constrain predicted points to some range:

ui
n+1 =

{
2un−i+1 − un−2i+1 if (un−i+1 − un−2i+1) < T
un−i+1 + T else

Each of these three predictions will have its own search region, and then un-
dergo hypotheses testing independently to obtain the corresponding MAP points.
These three points are then compared to produce just one estimated point at
distance vn+1, namely the point with the largest MAP.

Hypotheses testing based on MAP. A 1D search region S (with fixed width
in the row of the edge map of the birds-eye-view image) is attached to every
predicted point Xi

n+1. Let x(u, v) denote pixels in the search region of the edge
map of the birds-eye-view image. A likelihood function p(z|x), with z for observed
features, denotes the probability of observing a lane boundary edge at pixel
location x = (u, v). Then, the MAP estimation can be written as follows:

x∗ = arg max
x∈S

p(x|z)

Using Bayes’ theorem, we obtain that

x∗ = arg max
x∈S

p(z|x)p(x)
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Here, p(x) is a prior probability density function. Assuming smoothness between
neighboring boundary points, p(x) is defined as (a1, b1 are constants):

p(x) =
1
a1

exp(−b1(u− ui
n+1)2)

The determination of the likelihood function p(z|x) uses edge information. [22]
states that “edge-based methods often fail to locate the lane boundaries in images
with strong distracting edges”. However, edges are still useful as a source of
information to discriminate a lane from its surroundings; it is reasonable to
assume that the stronger an edge, the more likely it is that it is part of a lane
boundary; see [16]. Let S be the edge strength at x(u, v),and let xmax(umax, v)
be the pixel with the greatest edge strength Smax in S. Then, we use the following
(a2, b2, b3 are constants):

p(z|x) =
1
a2

exp(− 1
b2
· (S − Smax)2 − 1

b3
· (u− umax)2)

Experiments show that detected lane boundaries are (typically) distracted by
other strong edges such as at bright areas or shadows on the road, other objects
on the road or on the roadside – if only edge information is used. The smoothness
assumption (for corridor boundaries) and the proposed prediction method can
relieve the distractions caused by edges on the road.

3.3 Post processing for robust detection

Based on the detected corridor boundaries in Section 3.2, post processing will
produce a reasonable and smooth corridor. Optimal boundary selection will se-
lect a better boundary, points of which will then be smoothed by a sliding mean.
After back-projecting to the input image, a road patch defined by these bound-
aries will be extended as being the corridor.

Optimal corridor boundary selection. Till now, both a left and a right cor-
ridor boundary have been detected. Considering different deterioration features
in the left and right part of the road as well as if those boundaries are parallel or
not, it can be expected that both boundaries may not define a patch of constant
width on the road.

In this situation, this paper suggests that a better corridor boundary is se-
lected for robustness and practicality reasons, according to the following criteria.
For a straight road, the criterion may be something like “less lateral variation”
to pay more attention to the straight boundary. Actually, as we have made no
assumption of a straight road, two used criteria are actually useful for select-
ing the corridor boundary: first, the preference of “stronger edge strength” (As
edge information is used for corridor detection, a boundary with points showing
stronger edge strength will be selected.); second, the “minimization of variation
in boundary direction” (Due to requested smoothness of corridor boundaries, a
boundary with less change in direction will be selected with higher probability.)
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Sliding mean. As no specific road geometry is assumed, no curve model is
used to fit the detected boundary points. A simple sliding mean is applied for
ensuring smoothness of corridor boundaries. We obtain smoothed points X ′n
from the point sequence {Xn} by applying the following:

X ′n = X ′n−1 + (Xn −Xn−s)/s

The constant s determines the step size.

Road patch extension. Following the corridor definition as provided in Sec-
tion 2, once a “dominant” corridor boundary (left or right) is selected and
mapped back to the input image, a road patch will be calculated, having one of
its sides identical to the selected boundary, and by calculating the other side with
the pre-defined width. The width is adaptable as it should provide enough space
for the car to drive through. Compared with a constant road width assumption,
this method will provide a similar result if driving on a lane of constant width,
and a fixed width identical to the lane’s width. However, at other occasions, when
the constant road width assumption is not applicable, the provided method still
detects a reasonable corridor using the road patch extension.

4 Corridor tracking

This section presents a corridor tracking approach which is not utilizing a time-
consuming particle filter, as in [8, 16, 18, 19], nor a model-based Kalman filter,
as in [1]; both techniques are commonly used for lane tracking. After a corridor
is detected (as discussed in Section 3), a practical way to represent a corridor is
by using points on the central line of the corridor (in the birds-eye-view image)
and its width. Such a point sequence {Cn, n = 0, 1, . . . , N} (N is defined by
the lookahead distance) of the center line can be calculated from some of the
corridor’s boundary points (in the birds-eye-view image), also using the constant
corridor width. Tracking of a corridor is composed of two modules: continuous
corridor tracking, and discontinuous corridor tracking.

4.1 Continuous corridor tracking

Note that a corridor estimates a road patch that will be driven through shortly
by the ego-vehicle. This means that a corridor detected at time t will have been
partly driven through at time t+1. The ratio of the already driven part depends
on the cycle time between two frames as well as the ego-vehicle’s speed. If the ego-
vehicle does not change much the driving direction (i.e., the yaw angle), and is
also not in the process of a lane changing, then there will be a continuous corridor
update between subsequent frames. Note that the point sequence {Cn} is in the
birds-eye-view image. Corridor tracking is then easy, defined by tracking of the
ego-vehicle’s motion state for an adjustment of sequence {Cn}, and composed of
two steps: adjustment caused by the driven distance and the variation in driving
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direction; possibly also by detecting new points. For points {Cn} in frame t + 1
and {C ′n} in frame t, because of the driven distance, it follows that

Ci = C ′i+m, i = 0, 1, . . . , N −m

Here, m is determined by the driven distance, and usually it is small. Further-
more, points {Cn, n = 0, 1, . . . , N −m} will all have an added shift in lateral po-
sition (according to n) caused by the variation of driving direction between these
two frames. For the detection of center line points {Cn, n = N −m + 1, . . . , N},
the same method is used as introduced in Section 3.2. The only difference is that
left and right boundary points are calculated starting at points on the center
line. By combining points from the last frame and points detected in the current
frame, a corridor can be efficiently updated using the given sequence of frames.

4.2 Discontinuous corridor tracking

However, a corridor will not always change continuously between subsequent
frames, which is obvious from its definition. If the change in driving direction
is above some threshold, then the corridor may differ greatly compared to the
continuous corridor of the last frame. Another situation is when an ego-vehicle
is in the process of lane changing. The example in Fig. 6 gives an illustration
of this discontinuous case. In order to deal with such situations, a simple re-
initialization by corridor detection is applied. The change of driving direction
can be calculated from ego-vehicle’s motion model. Any occurrence of a lane
changing, or of any other boundary variation, can be identified by tracking the
intersection points (see Fig. 2). A pass through this intersection point means a
change of a corridor. Then, corridor detection will be applied as re-initialization,
to restart a new process of tracking. Actually, as corridor detection is really
time-efficient (see time measurements in Section 5), re-initialization will not
harm a continuous tracking of the corridor. Furthermore, driving direction and
intersection point allow an easy way to re-initiate using backtracking. – Figure 7
summarizes the proposed scheme of corridor tracking.

Ego-vehicle
Ego-vehicle

Ego-vehicle

Corridor Corridor Corridor

(a) (b) (c) Driving 
direction

Fig. 6. Illustration of corridor discontinuousness between frames. (a) Before lane chang-
ing. (b) During lane changing. (c) After lane changing.
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Corridor 
detection

  Adjustment of
{Cn, n=0,...,N-m}

     Detection of
{Cn, n=N-m+1,...,N}

t=t+1

N

Y

N

Y

yaw > T? On intersection         
         point?

Fig. 7. The proposed scheme for corridor tracking. “Yaw” means yaw angle, and “On
intersection point” means that the ego-vehicle drives on the intersection point of the
current (i.e., previous frame) corridor.

5 Experimental results

Experiments were conducted on images and sequences recorded with our test
vehicle “HAKA1” (see Fig. 8). Though a pair of stereo cameras was installed in
HAKA1 for those test drives, only the right input image sequence was used for
corridor detection.

Fig. 8. (a) The test vehicle ‘High Awareness Kinematic Automobile 1’ (HAKA1). (b)
A stereo camera pair on the bar behind the windscreen.

Corridor detection results are illustrated in Fig. 9 for a few selected (e.g.,
challenging) road situations. For better understanding of the shown situations,
intermediate results of raw boundary detections are also shown.

Images in the first row show a simple situation with relatively perfect lane
marks, but with shadows on the road. The detected corridor is similar as the
lane.
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Images in the third row illustrate a lane change. This provides a good demon-
stration of a corridor.

The other images illustrate some particular difficulties, such as when there
is only one road boundary visible, a “noisy” road surface, discontinuous lane

Fig. 9. Experimental results. (a) Original image. (b) Both raw corridor boundaries (in
red). (c) Final detected corridor (in green).
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marks, or a road without central lane marks. The raw detected left boundary in
the second row is far from perfect as being affected by lane-mark-like reflections
on the ego-vehicle’s windscreen. However, the corridor was constructed based on
the right boundary.

Corridor detection only takes less than 0.1 seconds for a 752×480 image, using
an off-the-shelf computer without runtime optimization. As no time-consuming
computation is needed for detection, it is very “reasonable” in its computational
efficiency.

Results for corridor tracking are presented in Fig. 10, for a few frames of some
sequences. For discontinuous tracking, corridor detection is commonly used for
re-initialization. Continuous corridor tracking is much faster than the discontin-
uous steps.

Obtained experimental results (see Fig.5) show that corridor detection and
tracking provides a good indication of the road patch that the ego-vehicle is
expected to drive through shortly, even under difficult road situations.

Fig. 10. Experimental results.
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6 Conclusions

A new concept of a corridor was introduced in this paper, and a possible corridor
detection and tracking method is proposed. Compared with a lane, a corridor
also pays attention to the driver’s intention, which is indicated by the car’s
lateral position on the road and the driving direction. Still, a corridor is partly
constrained by the physical lane marks or boundaries, and it will follow those if
suitable.

A main difference between lane and corridor detection methods is that cor-
ridor detection starts at fixed points (two start points) and searches in driving
direction. Road patch extensions combined with better boundary selections may
be applied when only one corridor boundary can be detected, and there is no
assumption about a constant road width.
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