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Abstract. This paper reports about the performance of various cost
functions as common or possible for stereo matching, within a ‘purist’s
matching strategy’, which does not integrate any further optimization
approach such as a continuity term, coarse-to-fine, left/right consistency
checks, or others. The performed experiments support a few general
conclusions, such as about the relation between 1D- or 2D-window
based cost functions, the use of zero-mean normalization, the census cost
function, or the use of B-splines for subpixel accurate cost calculation.

1 Introduction

Stereo algorithms are currently becoming an integral part of vision-based driver
assistance systems (DAS); see, for example, [4]. Stereo algorithms using a
semi-global matching (SGM) strategy are of particular interests; the paper [6]
initiated this interest in SGM algorithms. As in other stereo matching methods,
a similarity measure (i.e., a cost function) determines the cost at every pixel
for potentially relevant disparities. In SGM algorithms, these costs are then
integrated by applying a semi-global accumulation scheme that incorporates
smoothness terms and uses a dynamic programming technique for efficiency
reasons. In belief propagation [3] stereo matching algorithms, a data term (i.e.,
a cost function) is combined with a continuity term.

A recent paper [8] evaluates the performance of matching costs on images
with radiometric differences. This work is especially interesting for real-world
stereo sequences as provided, for example, on EISATS — the .enpeda.. image
sequence analysis test site.! Differences in image brightness (say, between left
and right camera at time ¢) are very common for stereo vision in DAS.

One of the core assumptions for the evaluation in [8] is that ”the performance
of a matching cost can depend on the algorithm that uses the cost”. To assure
that their results are not biased by using one particular stereo algorithm only,
they tested most of the listed cost functions within representative algorithms for
local, semi-global (SGM), or global matching strategies (one algorithm for each
class).

Since cost calculation is the core component of a stereo matching algorithm,
we have chosen for this paper a methodology that evaluates cost functions

! www.mi.auckland.ac.nz/EISATS



regardless (!) of the applied stereo algorithm. This may help to adjust other
components of a stereo matching algorithm (e.g., number of search paths, the
smoothness or continuity term) with respect to the preferred cost function.

In this sense this paper discusses the ‘naked truth’ about cost functions: we
do not integrate those into any non-trivial stereo matching approach; there are
no coarse-to-fine, smoothing, left/right consistency checks, or other means not
directly specifying the cost function.

Section 2 specifies all cost functions considered in this paper. Typically we
assume window-based cost functions which are usually defined by a square k x k
neighborhood. Section 2 describes commonly known cost functions for such a
2D default window. Since our focus is not only on matching accuracy but also
on computational time efficiency, we evaluate all those functions also over a 1D
window 1 x1 along the image row (i.e., along the epipolar line). It turned out that
a 1D 1 x ! window may (under some conditions) qualitatively outperform their
2D k x k equivalent, typically with [ > k, but [ < k2, thus saving computation
time and (!) improving accuracy.

Section 3 proposes approximating B-spline curves for cost computations.
Although B-splines are, of course, very expensive in terms of computation
time, we gain in return a continuous representation of the intensity signal. This
provides potentials for the application of subpixel (or subsampling) techniques
that can be of benefit for offline applications.

Section 4 discusses the evaluation methodology.? Experimental results are
provided in Section 5. Section 6 concludes this paper.

Our motivation for the reported research is to adjust the components of an
SGM algorithm for real-world stereo sequences (such as in vision-based driver
assistance), allowing real-time processing (say, at 25...30 Hz).

2 Cost Functions

Cost functions (also called similarity measures) define the “core” of many stereo
matching algorithms.

2.1 General Notation

In a (rectified) stereo image pair we consider a base and a match image. The
base image is assumed to be the right image R. L denotes the match image. We
only consider gray-level (i.e., intensity) images in this paper with values between
0 and Gaz-

Any local cost function C defines a global mapping I'c (R, L) = C that takes
rectified stereo images R and L as input, and outputs a 3D cost matrix C' with

2 We provide online a compiled command line application (costSGM.exe under win32)
at www.mi.auckland.ac.nz/costSGM that allows one to compute a disparity map for
a submitted rectified stereo image pair, selecting a cost function as evaluated in this
paper. The applied stereo matching algorithm is the SGM algorithm as proposed in
[6]. This application is documented by a brief online manual.



elements C(i, j, d), representing the cost when matching a pixel at (i,7) in R
with a pixel at (i +d, j) in L, for any relevant disparity d.

We may simplify notations due to working with rectified images where
epipolar lines are aligned to the z-axis, and we may consider a fixed image
row j in the base and match image at a time. Let p; denote a pixel location in R
at image column ¢. Let R; be the value at this location in the base image; g; 14
denotes the pixel location (i 4 d, j) in the match image L with intensity L;i 4.
C(i,d) is the abbreviated notation for the cost.

We distinguish between window-based and pizel-based cost functions.
Pixel-based cost functions only depend on values R; and L;;4. Window-based
cost functions take more intensity values into account, such as in k X k or 1 x [
neighborhoods of p; and ¢;44, for k,1 > 2. Our experiments use odd integers k
and [.

Window-based cost functions C, as used in this paper are either 1D (i.e.,
defined on an 1 x [ window) or defined on a k x k window (without calling it 2D
explicitly in this case).

We evaluate window-based cost functions either in original or zero-mean
versions. In the zero-mean version, first the mean intensity of the window is
computed and then subtracted from all the intensities in the window prior to
applying the original version of the cost function. The zero-mean version of a
cost function C is identified by adding a prefix Z to its acronym. (Any acronym
of an original version will not start with a Z.)

2.2 Pixel-Based Cost Functions

The absolute difference (AD) of base and match pixel is the simplest measure:
Cap(i,d) = [Ri — Li4d|

Another commonly used pixel-based cost function (BT) was presented in [1]. In
a first step, intensities in R and L are interpolated using either a previous or a
subsequent pixel along the epipolar line. For example,

1
Ry 10 = 3 (Ri + Ri—1)
is an interpolated value at p;, with respect to the previous pixel.

Ri={Ri_1/2, Ri; Ri11)2}

is a set containing the intensity at p; in R as well as the interpolated intensities
with previous and subsequent pixels. Analogously, £;;4 is a set containing the
intensity at ¢;1+q4 in L as well as the interpolated intensities with previous and
subsequent pixels. The BT cost function is then defined as follows:

Cpr(i,d) = min{a, b} with
a = max {R; —max(L;1q), min(L;1q) — R;, 0}
b=max {L;y+q — max(R;), min(R;) — Li+q4, 0}



2.3 Window-Based Cost Functions

The sum of absolute differences (SAD) cost function is a straightforward window
extension of the AD cost function. For specifying the ZSAD cost function, let W
denote the set of all [ or k? pixel locations of the used window when centered at
reference point (0,0). Let R; be the mean of all intensities at pixels in W + p;
in R, and fH_d be the mean of all intensities at pixels in W + ¢;14 in L. The
ZSAD cost function is defined as follows:

Czsap(id) = Y |[Rey — Ri] = [Latay — Livdl]
(Ivy)€W+Pi

For deriving the original Cgap from this formula, both means are set to be
zero. A similar measure is the sum of squared differences (SSD). The ZSSD cost
function is defined as follows:

OZSSD (Za d) = Z |[Rmy - E’L]z - [Lr+d,y - Zi—i—ai]2|
(%Z/)EW"FIM

For the original C'sgp, just set both means to zero.

Similarly, we specify the normalized cross correlation (NCC) function via the
ZNCC version:

Z(wyy)ewﬂu; [Rry - ﬁi] [Lrer,y - Ziﬂﬂ
\/Z(m,y)ew.s.pi [Rfy - Rl} Z(m,y)eW-&-pi [L:z:+d,y - Lier]

Cunceoli,d) =1.0 —

Cncc follows for R; = fi+d =0.
The census cost function is a very robust measure and we use it based on the
following definition:

Czcensus (i7 d) = Z p(:c, Y, d) with
($7y)EW+Pi

_J0 RyyAR; and LyyqyALjyq, with A either < or >
ple,y,d) = { 1 otherwise

If we set R; = R; and L;,4 = L;,4 in this formula, then we have the original
census cost function Ceepsys-

3 B-Splines for Cost Calculation

For B-spline curves we refer to [9] for a practical introduction, and to [2] for a
broader and more general coverage. We briefly recall B-spline curves here solely
for their use for improving the performance of cost calculations.



3.1 B-Spline Curves

A parametric 2D B-spline curve of degree n is defined by a sequence of control
points dg, dy, ..., d,,—1 in R? and a sequence of m + n + 1 knots ug, Uy, ..., U 4n,
with u; < uiq1; [Ug, Umtn) € R is the domain on which the curve is defined. To
evaluate a point on the curve we have a mapping [ : [ug, Umin) — R?, with

J(@t) = (x(t),y(t)) and t € [ug, Um+n). To evaluate z(t) and y(t), the following
interpolation scheme is applied for the control points:

1 t; < tiy1
otherwise

t—1t; t; —t

k k—1 +k+1 k—1

Nf(t) = — 7’ N (t)+7f —— N (1)
tz+k t; t1+k+1 tz+1

with ¢ =0,....,m+n+1and k = 1,...,n. Obviously, the basis functions depend
on the knot sequence, thus the choice of the knot vector affects the shape of
the curve. For our cost calculations we choose an open uniform B-spline curve,
where the knot sequence has multiplicities of n + 1 at the beginning and end,
and is equidistantly spaced between 0 and 1.

We set the degree to be n = 3. The knot sequence in case of, for example,
seven control points would be 0,0, 0, 0, i, %, %, 1,1,1,1. The multiplicity of knots
at the beginning and end ensures that the B-spline curves start at dy and end at
dm—1. Because we choose a cubic curve, we can also derive first and second order
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Fig. 1. A B-spline curve approximates a fixed image row with index j, using positions
1 and corresponding intensities as a control polygon. For an intensity R;, interpolates
Ri_0.25 and R;10.25 are used for cost calculation. Note the smoothing effect at intensity
amplitude R;.



information at any curve point by formal differentiation of the basis functions.
This might be of benefit if higher order information (such as curve normal
orientation, or curvature) should also be considered in the similarity measure.

3.2 Approximation of a Single Image Row

B-splines are widely used for data approximation. We approximate a single image
row by a 2D open uniform cubic B-spline curve. The row index j is fixed, and
does not need to be used. We identify the first coordinate of the control points
with the column index i, and the second coordinate with the intensity R;, for
each pixel location in image row j. Thus, the control sequence has the form
d; = (i, R;), for i =0, ...,w — 1, where w is the uniform width of R and L.

We recall the following convex hull property of approximating B-splines: any
point on the curve lies within the union of convex hulls, each defined by n
consecutive points d;, d; 41, ..., d;+,—1 of the control sequence, with ¢ =0, ...,m —
n — 1 and n being the degree of the curve. In other words, it is assured that the
curve follows smoothly the sequence of discrete control points. For example, see
Figure 1. The whole B-spline lies within the upper and lower linear envelope.
Also note that, due to the approximating character of a B-spline, this creates a
smoothing effect for the intensity signal. This effect occurs especially at outliers,
such as R; in Figure 1.

3.3 Application to Cost Calculation

Consider the 1D SAD cost function which sums up intensity differences using
an 1 x [ window, for pixel locations in some image row j in R and L. This is
possible because we have direct access to intensity values R; or L;i 4 at grid
points. However, after approximating such an image row by a B-spline curve,
there is no explicit representation of the form R; = [(p;), because B-splines are
parametric curves, and multiple-valued functions in general.?

However, the used control polygon as specified follows the image row (i.e.,
the first component represents image column indices, and those are strictly
monotonically increasing). It follows that the underlying curve behaves like a
single-valued function. Thus we are able to apply a binary search scheme to read
the intensity at an arbitrary column index within a predefined tolerance § > 0.

We utilize the described B-spline approximation for the calculation of cost
functions 1D NCC, 1D ZNCC, 1D SAD and 1D ZSAD, as well as 1D SSD and
1D ZSSD, simply by replacing intensities R; by R;_¢.25 and R;;19.25 using
0 = 0.01, (see Figure 1). In other words, we subsample the intensity signal and
evaluate this way (within the same window) twice as many intensity values by
using a step width of half a pixel. If using the intensity value R; at i on the
B-spline with a step width of 1, the B-spline would simply serve as a smoothing
function. We used this sampling later in Section 5.6 to have a fair comparison
in the evaluation of the subpixel accuracy approach.

3 Note that the original grid points are encoded in the control polygon, and can easily
be retrieved.



4 Evaluation of Cost Functions

We compute costs at every pixel location (except for a seven pixel offset from
the border), and for any possible disparity.

4.1 The Purist’s Matching Approach

Recall that the right input image acts as base image. For every pixel location
p; we select that disparity (for the generated depth map) which has the overall
minimum cost. If there is more than one minima, the result is ambiguous, and we
consider the disparity at this pixel location to be invalid (i.e., undefined). Once
a valid minimum is found, we fit a parabolic curve through costs of neighboring
disparities to achieve subpixel accuracy; we then check this disparity against the
ground truth; if this disparity does not deviate by more than 1.5 we call this a
perfect match. Otherwise we call it a mismatch.

In our evaluation we computed the percentage of perfect matches and
mismatches. Those are computed by dividing the number of perfect matches
(mismatches) by the number of evaluated pixels, and this includes all pixels
for which ground truth was available. Thus, if ambiguities occur, then those
percentages do not sum up to 100%.

We also computed a mean ambiguity by dividing all minima by the number
of evaluated pixels. Thus, a mean ambiguity of 1.0 means that there has been
always exactly one minimum at each pixel location. A mean ambiguity of >
1.0 means that there are pixel locations with multiple minima. The experiments
allow one to conclude that most of the cost functions do have a very low mean
ambiguity (when working with floating point numbers). The only exceptions are
given by the pixel based cost functions as well as by the census cost function.
(Thus we include results for mean ambiguity only in Tables 4 and 5.)

Note that we did not swap the roles of R and L of being base and match
image in this order (to perform a right/left consistency check). This is because
we consider such a check as being a part of a stereo computation, and this would
alter the results of a pure cost function analysis.

4.2 Test Data

We evaluate stereo matching on rectified image pairs as provided on the
Middlebury stereo website,* for which ground truth is available. We use the
sequences Tsukuba (at a sixteenth of its size), Teddy, Cones (at a quarter of its
size) as well as Art, Books, Laundry, Dolls, Moebius, and Reindeer (at a third of
its size).

We decided to take those nine image pairs, provided with ground truth, to
ensure diversity. Downsized versions are taken because many evaluations (such
as in [8]) use them as well, and we have thus a comparable setup.

4 vision.middlebury.edu/stereo/



In case of Tsukuba we did not accept any deviation for identifying a perfect
match. We also did not aim at subpixel accuracy in this case because ground
truth values are multiples of sixteen.

Note that allowing a deviation of 1.5 is just a logical consequence from
rounding to the closest disparity value when multiplying by the factor used
for downscaling the images, and allowing the common deviation of 1 at full
resolution.

We applied our test methodology to all the image sets listed above, for all
the specified cost functions, using window sizes k x k and 1 x [, for k and [ being
either 7 or 15.

5 Results

We report about those results first which appeared to us as being most
interesting.

5.1 1D versus 2D; Does Size Matter?

Table 1 presents resulting mean percentages of perfect matches for studied cost
functions, summarized over all (!) of the evaluated images pairs. The focus lies
here on comparing a 1D against a 2D window, and also a larger 2D window
versus a smaller 2D window. (For results on individual image pairs, see Tables 2
to 5 later on.)

Table 1. Mean of perfect matches for (top) SAD, (middle) SSD, and (bottom)
NCC, comparing the performance of best performing 1D cost functions versus their
corresponding 2D windows.

Window =15 k=15 k=7

cost function 1D SAD 1D ZSAD SAD ZSAD SAD ZSAD
mean 49.7% 58.1% 56.8% 60.6% 53.4% 63.5%
Window =15 =15 k=

cost function 1D SSD 1D ZSSD SSD 7ZSSD SSD 7ZSSD
mean 51.8% 57.8% 55.7% 58.3% 55.3% 63.1%
Window =15 k=15 k=7

cost function 1D NCC 1D ZNCC NCC ZNCC NCC ZNCC
mean 58.0% 56.7% 58.5% 59.2% 63.2% 63.2%




Fig. 2. Teddy image pair. From left to right. First Row: SAD, ZSAD, 1D SAD, 1D
ZSAD. Second Row: SSD, ZSSD, 1D SSD, 1D ZSSD. Third Row: NCC, ZNCC, 1D
NCC, 1D ZNCC. Fourth Row: Census, ZCensus, 1D Census, 1D ZCensus

Figure 2 shows results for a selection of cost functions for the Teddy image
pair. Mismatches are labeled white.

We focus on the relation between accuracy and computational time. We
summarize our evaluation as follows:

— SAD and SSD perform better in their zero-mean versions whereas ZNNC
and NNC tend to lead to identical results. Thus, there appears to be no
reason to run the more expensive zero-mean version for NCC.

— Choosing a window k = 7 performs as good as k = 15, and in some cases
even better (e.g., NCC). Because of the complexity contribution k2 to the
run time, this is certainly an important observation.

— In case of NCC, the 1D version is as good as its 2D version if using k = [ = 15.
Thus, it appears that here is no reason to run the much more expensive 2D
version for NCC.

— The 1D regular and zero-mean versions for SAD and SSD (I = 15) are about
3-4 % points below of the 2D (k = 7) versions, and about 10 % points below if



considering 1D original versus 2D zero mean. Here is a clear tradeoff between
performance and time efficiency. (See the quality differences in Figure 2).

— 1D zero-mean (I = 15) qualitatively outperforms the original 2D version for
k = 7. However, when looking at computational time, it probably does not
make a big difference in terms of computational time!

Table 2. Mean results of different kinds of SAD cost functions for different image
pairs, with window size equals 15: the given percentages denote perfect matches. For
SADso and ZSADs0, see Section 5.4.

Window k=15/1=15 | SAD SAD,, | ZSAD | ZSAD,, | IDSAD | IDZSAD | B-splincss» |ZB-splincss»
TSUKUBA 73.3% 74.1% 72.5% 73.6% 65.0% 63.7% 71.3% 70.4%
CONES 66.2% 67.3% 69.7% 69.3% 55.5% 66.6% 493% 653%
TEDDY 62.3% 64.1% 67.1% 66.8% 55.1% 63.7% 52.4% 63.0%
ART 41.4% 433% 47.0% 477% 35.4% 47.8% 33.2% 46.4%
BOOKS 58.3% 60.5% 61.3% 61.4% 43.8% 56.4% 41.4% 56.6%
LAUNDRY 43.4% 472% 51.1% 51.1% 37.6% 46.8% 38.1% 48.4%
MOEBIUS 60.7% 623% 64.0% 63.9% 55.4% 63.0% 52.5% 62.6%
DOLLS 55.2% 55.7% 58.6% 58.2% 523% 59.7% 50.6% 58.6%
REINDEER 50.5% 51.8% 54.3% 53.9% 47.6% 55.0% 47.0% 55.5%
mean 56.8% 58.5% 60.6% 60.7% 49.7% 58.1% 48.4% 58.5%

Table 3. Mean results of different kinds of SSD cost functions for different image pairs
with window size equals 15. For SADso and ZSADsg, see Section 5.4.

Window k=15/1=15 | ~ SSD SSD, ZSSD | ZSSD,, | IDSSD | IDZSSD | B-spliness> |ZB-spliness
TSUKUBA 73.5% 73.6% 73.5% 73,7% 65.7% 65.4% 70.0% 70.4%
CONES 64.9% 65.0% 66.3% 66.0% 58.6% 65.2% 53.4% 64.2%
TEDDY 61.0% 61.8% 64.2% 63.9% 57.4% 63.5% 54.0% 62.7%
ART 37.8% 39.2% 43.7% 43.6% 36.6% 47.0% 33.7% 457%
BOOKS 593% 59.5% 60.5% 60.3% 48.0% 56.5% 45.1% 56.8%
LAUNDRY 44.9% 46.6% 49.8% 49.4% 40.2% 472% 40.5% 48.5%
MOEBIUS 58.9% 59.4% 61.2% 60.8% 57.3% 623% 54.6% 61.9%
DOLLS 51.6% 51.5% 54.2% 53.8% 52.6% 58.4% 50.7% 50.7%
REINDEER 49.0% 49.6% 51.6% 51.3% 49.8% 55.1% 479% 55.1%
mean 55.7% 56.2% 58.3% 58.1% 51.8% 57.8% 50.0% 57.3%

5.2 Census Cost Function

The census cost function performs significantly better in its zero-mean version.
Because the Hamming distance is used for the discrete cost calculation, the 1D
version performs poor as expected, and with ambiguities. This is the reason
that we excluded this cost function from being listed in the tables. However,
an example of the poor performance of the 1D census function can be seen in



Table 4. Results of different kinds of NCC cost functions for different image pairs with
window size equals 15: the given percentages denote perfect matches. Note that this
table also covers the 2D census function as well as as AD and BT.

Window k=15 / 1=15 NCC ZNCC IDNCC | 1D ZNCC | B-splinevce | ZB-spline¥cc |  Census ZCensus AD BT
TSUKUBA 73.9% 73.9% 65.8% 64.5% 70.6% 69.5% 54.5% 63.9% 15.9% 34%
CONES 66.2% 67.4% 65.0% 64.8% 64.0% 63.9% 60.6% 66.7% 4.9% 0.7%
TEDDY 64.2% 65.5% 63.3% 62.8% 62.6% 62.4% 52.7% 62.5% 5.3% 0.7%
ART 44.1% 453% 47.3% 46.3% 45.9% 453% 43.5% 41.6% 4.8% 0.5%
BOOKS 60.6% 61.4% 56.6% 54.7% 57.0% 55.9% 46.5% 53.4% 38% 0.5%
LAUNDRY 50.2% 50.0% 47.5% 45.8% 48.7% 47.2% 37.2% 40.2% 3.9% 0.5%
MOEBIUS 61.4% 62.2% 62.5% 60.3% 62.0% 60.2% 55.7% 58.1% 5.7% 0.5%
DOLLS 54.5% 54.7% 58.8% 57.6% 57.9% 57.2% 55.5% 53.2% 6.8% 0.7%
REINDEER 51.8% 52.0% 55.0% 53.5% 55.1% 53.9% 46.4% 49.8% 4.7% 0.7%
mean
perfect matches 58.5% 59.2% 58.0% 56.7% 58.2% 57.3% 49.8% 54.4% 6.2% 0.9%
mean ambiguity 1.00 1 1.01 1.02 1.00 1 1.13 1.42 2.65 9.29

Figure 2. When looking at results as in Figure 2, we concluded that the census
function seems to be very robust in general, but SAD and NCC clearly indicate
discontinuities (which may actually be usable features for object detection!).

5.3 Pixel-Based Cost Functions

Table 4 contains the evaluation of both pixel-based cost functions AD and BT.
Both functions perform poorly when evaluated in our methodology. Obviously,
the advantage of AD is that it is very fast (also compared to BT). Because BT
needs some expensive interpolations and many comparisons it takes up more
computation time than 1D SAD, which clearly performs better than BT. BT
is also highly ambiguous. The mean ambiguity ranges from 6 minima per pixel
up to 12 minima. The mean ambiguity of AD lies just between 2 to 3 minima
per pixel. This does not necessarily mean that both perform poorly when used
within a stereo matching strategy. But is just points out that these uncertainties
should be considered in a stereo matching technique utilizing those.

5.4 Tuning of Cost Functions

We also apply a modification of the SAD and SSD cost functions. We only
consider a certain percentage of the larger differences in the given window
as possible contributors for the given sum. The reasoning is as follows: a
match should have relatively small differences within the whole neighborhood;
discarding a certain percentage of the smaller differences in each neighborhood
boosts the impact of larger differences, and this may help to decide whether a
pixel is a match or not. In our evaluation we choose to discard the lower 50%
differences, leading to cost functions SAD5o and SSD5y.

We decided for the Cones image pair for testing this approach. For this pair
it seems that 50% is a good choice for all the used cost functions. However, a
more representative study is needed to conclude properly for this type of tuning.



The tuning of SAD and SSD functions tends to improve results slightly for
the original versions of SAD and SSD, but leads to slightly worse results for
zero-mean versions. The big difficulty seems to choose the optimum percentage
for given image pairs. Another approach might be to discard all differences that
are lower than a certain threshold, and then just use the mean of SAD or SSD
(to assure comparability between costs).

Table 5. Results of different kinds of NCC cost function for different image pairs with
window size equals 7: the given percentages denote perfect matches. Also evaluated is
the census 2D function.

Window k=7 /1=7 NCC ZNCC IDNCC | 1D ZNCC | B-splinexce |ZB-spline~ce | Census ZCensus
TSUKUBA 68.7% 67.8% 559% 50.9% 63.4% 58.8% 392% 48.0%
CONES 73.1% 74.7% 58.9% 49.6% 60.9% 51.9% 50.1% 61.3%
TEDDY 69.9% 71.2% 47 4% 38.5% 50.2% 41.4% 38.6% 50.3%
ART 53.0% 53.4% 42.3% 30.5% 43.4% 33.3% 322% 35.4%
BOOKS 58.9% 58.6% 41.7% 28.5% 45.1% 36.8% 31.0% 39.4%
LAUNDRY 49.5% 47.7% 37.5% 26.6% 40.7% 32.9% 23.5% 25.9%
MOEBIUS 66.0% 65.8% 52.7% 40.4% 55.8% 45.7% 42.1% 49.3%
DOLLS 65.6% 65.7% 54.1% 41.4% 55.5% 43.9% 42.1% 46.9%
REINDEER 64.4% 64.3% 43.7% 34.8% 46.9% 37.4% 35.1% 44.5%
mean
perfect matches 63.2% 63.2% 48.2% 37.9% 51.3% 42.5% 37.1% 44.6%
mean ambiguity 1.00 1.00 1.04 146 1.00 1.00 1.55 2.10

5.5 Correlation-Based Measures

We briefly comment about the correlation-based measure; see Table 5. For
window size k = 15 or [ = 15, the 1D NCC performs almost as good as its
2D version (or even better (!); see Art, Dolls and Reindeer). There is also not a
big difference between zero-mean and original versions in general. In most cases,
the zero-mean version performs even slightly worse.

For window size 7, however, the NCC (k = 7) outperforms its 1D NCC (I = 7)
equivalent. The 1D ZNCC also performs badly. With respect to computational
time and accuracy, a 1D original version of NCC may be recommend if the 1 x [
window is of sufficiently large size, due to time benefits.

5.6 Subpixel Accuracy Using B-splines

The results for B-spline based functions, as proposed in Section 3.3, are slightly
worse compared to those for the 1D SAD and SSD cost functions (both
the original and the zero-mean version). For NCC, the subsampling of the



B-spline curve seems to improve the result slightly. However, another approach
is suggested by the following concept of subpixel accuracy.

We compare again 1D SAD, SSD and NCC (note: the original versions)
against their B-spline versions. This time we do not allow any deviation from
the ground truth (i.e., we only accept the rounding to the nearest integer value
in case of applying a parabolic curve fit). For the B-spline-based cost function,
we do not use curve fitting but apply the following concept of subpixel accuracy.

Assume two different cost functions and the same minimum cost, and that
both approaches apply a parabolic fit through this identical minimum cost value
d and its two neighboring cost values at d — 1 and d + 1, identifying a rational
minimum d,,;,; still both cost functions may lead to different results (within the
range of +1 disparity). Because we can subsample the B-spline intensity signal
with a step size of less than 1, we calculate costs for rational disparities d € Q
instead of for integer values only. The idea is that this improves the chance to
identify a unique minimum.

In the following experiments we used the image pairs of the quarter-sized
Teddy and the Cones, testing for matches from 0 to d,,4, by going in increments
of i. For example, let us assume that we like to evaluate for d,,., = 10, and the
minimum is at d,,;, = 6.75. The original version may find a minimum at d =7
and fits a parabolic curve through costs at d = 6, d = 7 and d = 8. The proposed
method does not fit through those costs. Instead it tests for d = 6.0, 6.25, 6.5,
6.75, and so forth, and may (or may not) find the minimum at 6.75 as well. This
approach is evaluated in Table 6. We consider a match as being valid only if it
coincides with the ground truth. The ‘enhanced’ B-spline cost function, using
the proposed subpixel approach, is denoted by subscript subP.

Table 6. B-spline cost function evaluated over windows with [ = 7 and [ = 15,
compared with their corresponding original 1D versions; subpixel sampling either by
common parabolic curve fit or by proposed B-spline based subsampling of intensities.

SAD/SAD,_,,, | SSD/SSD_,,, | NCC/NCC, ., | ZSAD/ZSAD_ . | ZSSD/ZSSD_,, |ZNCC/ZNCC , ,
Window =15
TEDDY 24.6% | 257% | 274% | 285% | 313% | 34.1% | 29.5% | 33.8% | 31.5% | 343% | 31.1% | 343%
CONES 258% | 20.6% | 28.6% | 26.1% | 33.7% | 34.4% | 333% | 349% | 33.8% | 344% | 33.6% | 34.8%
Window =7
TEDDY 189% | 21.4% | 21.5% | 23.6% | 22.1% | 288% | 204% | 28.3% | 220% | 28.8% | 17.5% | 264%
CONES 20.1% | 16.1% | 22.7% | 21.3% | 29.6% | 36.0% | 29.0% | 35.6% | 29.9% | 36.1% | 24.6% | 340%

The accuracy seems to improve in almost every case, except for SAD and
SSD in case of the Cones image pair. Especially NCC seems to benefit from a
performance gain. Also, the performance gain of this approach seems to be larger
when evaluated over the smaller window with [ = 7. For a window with [ = 15,
the gain is not as significant. But values are on a higher level. This is another
clue that 1D windows need to have a sufficient size to perform well. However,
this gain comes with the cost of testing more disparities: if we test, for example,
for dyqe = 10, then we actually test for 40 disparities if using increments of %.



Thus, the proposed B-spline based subsampling of intensities improves results,
but is not yet suitable for realtime applications.

6 Conclusions

Zero-mean versions outperform the original versions for SAD and SSD, but not
for NCC. The zero-mean normalization seems to have even a negative impact in
this case.

Computation time can be saved by choosing the 1D version of cost functions
over a large window (e.g., | = 15) instead of using a 2D version over a smaller
window (e.g., k =7).

We introduced the use of B-spline curves for cost computation on subsampled
image intensities. The subpixel accuracy approach using B-splines seems to
improve results. Including first order information (like orientation of curve
normals) into the cost calculation, or choosing different subsampling strategies,
leaves some space for further investigations of the B-spline-based approach.

Pixel-based cost calculations (AD and BT) lead to high ambiguities. This
should be considered when applying those in a stereo matching technique.

We introduced the idea of discarding a percentage of the lower differences for
cost functions of type SAD and SSD. Further studies are needed here for general
conclusions.

Acknowledgement. The authors thank Laura Zechel for her support in table
and image formating. Without her help this paper would not have met the
submission deadline.

References

1. Birchfield, S., and Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. Int.
J. Computer Vision, 35:269-293 (1999)

2. Farin, G.: Curves and Surfaces for CAGD. A Practical Guide. Fifth edition,
Morgan Kaufmann, San Francisco (2001)

3. Felzenszwalb, P.F., and Huttenlocher, D. P.: Efficient belief propagation for early
vision. In Proc. CVPR, volume 1, pages 261-268 (2004)

4. Franke, U.: Progress in space-time machine vision. Talk at Freiburg University,
http://www2.faw.uni-freiburg.de/kolloquium /ss08 /franke.pdf (2008)

5. Hermann, S., Klette, R., and Destefanis, E.: Inclusion of a second-order prior
into semi-global matching. In Proc. Pacific Rim Symp. Image Video Technology
(PSIVT), LNCS 5414, pages 633-644 (2009)

6. Hirschmiiller, H.: Accurate and efficient stereo processing by semi-global matching
and mutual information. In Proc. IFEE Conf. Computer Vision Pattern
Recognition (CVPR), volume 2, pages 807-814 (2005)

7. Hirschmiiller, H.: Stereo vision in structured environments by consistent
semi-global matching. In Proc. IEEE Conf. Computer Vision Pattern Recognition
(CVPR), volume 2, pages 2386-2393 (2006)



8. Hirschmiiller, H., and Scharstein, D.: Evaluation of stereo matching costs on images
with radiometric differences. IEEE Trans. Pattern Analysis Machine Intelligence,
http://doi.ieeecomputersociety.org/10.1109/ TPAMI.2008.221 (2008)

9. Rogers, D. F.: An Introduction to Nurbs. With Historical Perspective. Morgan
Kaufmann, San Francisco (2001)



