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Abstract. Stereo and motion analysis are potential techniques for pro-
viding information for control or assistance systems in various robotics or
driver assistance applications. This paper evaluates the performance of
several stereo and motion algorithms over a long synthetic sequence (100
stereo pairs). Such an evaluation of low-level computer vision algorithms
is necessary, as moving platforms are being used for image analysis in
a wide area of applications. In this paper algorithms are evaluated with
respect to robustness by modifying the test sequence with various types
of realistic noise. The novelty of this paper is comparing top performing
algorithms on a long sequence of images, taken from a moving platform.

1 Introduction

The main task of computer vision is to use image data recorded by one or mul-
tiple cameras to understand the given 3D environment. In particular, stereo
algorithms obtain 3D information about the scene geometry, and motion algo-
rithms gather information about the 2D motion of the images. Both types of
information are needed to reconstruct the 3D motion of the scene. These algo-
rithms still represent a challenging task for the vision community. For mobile
devices the challenge becomes even more difficult; moving background, change
in lighting conditions, possible misalignments of cameras, and so forth, make the
task of the algorithms even harder. However, the use of cameras has become a
popular data sensor for moving vehicles. Vision-based stereo has already been
used in a wide variety of vehicles, including wheelchairs (e.g., for the detection
of obstacles, unevenness of the ground, detection of stairs and ropes or beams in
the air [14]), or for forklifts, where the operator gets valuable information to deal
with heavy loads at great heights [15], and in standard cars to assist a driver
while driving on a road.

Thus, it is necessary to evaluate the performance of these algorithms to
detect which one performs the best in different situations and to encourage their
theoretical improvement. Several authors have evaluated stereo algorithms; for
example [1] presented one of the earliest evaluations of stereo algorithms and
[3] presented one of the most recent and representative evaluation papers so far.
Several stereo algorithms were tested, but in both cases the experiments were



done with small sets of images. Motion algorithms have also been evaluated, the
approach presented in [18] influenced the evaluation of motion algorithms until
recently. Now, [17] is the main approach for testing and comparing algorithms
online. However, both publications focus on very short image sequences or single
stereo frames; none of them analized long stereo sequences.

In this paper we evaluate the performance of stereo and motion algorithms
over a long (i.e., 100 stereo pairs) sequence. The analysis of long sequences allows
the usage of temporal information (e.g., [6]). In order to test the robustness of
the chosen algorithms, we added different kinds of noise to the sequence so that
algorithms can be tested under different conditions [13]. As we are interested in
testing the algorithms on a mobile platform (a wheelchair or car), we used a long
sequence that is publicly available [5], with ground truth for motion and stereo,
in Set 2 on the .enpeda.. Image Sequence Analysis Test Site [4]. This sequence
simulates a driving situation.

This paper follows basically [13] with respect to stereo algorithm evaluation,
and extends these studies by including evaluations of optic flow algorithms on
the same synthetic sequence.

2 Stereo and Motion Algorithms

In this section we briefly introduce the stereo and motion algorithms that we
use for our evaluation in this paper.

2.1 Stereo Algorithms

Stereo vision is the process of understanding the 3D information of the environ-
ment from the available 2D data (e.g., a set of 2 or more images), by matching
corresponding projections of a 3D point in (at last) two images. The algorithms
chosen for our analysis are as follows:

Dynamic programming stereo; we compare a standard algorithm [7] (DP), against
one with temporal (DPt), spatial (DPs), or temporal and spatial (DPts) propa-
gation; see [8] for propagation details.

Belief propagation stereo (BP); we use a coarse-to-fine algorithm [9] with quadratic
cost function, as reported in [10].

Semi-global matching (SGM) characterizes one of the top performing stereo
strategies, see [2]. We chose two cost functions to contrast and compare effects
of noise, mutual information (SGM MI) or Birchfield-Tomasi (SGM BT) [11] .

2.2 Motion Algorithms

Motion analysis is estimated from a pair of images taken sequentially. Optic
flow algorithm aims to detect the visible displacement of pixels in the image
plane to understand the motion of the 2D projection of 3D motion for the visible



(a) Left image (b) Right image (c) GT Disparity (d) Color Key (e) GT Flow

Fig. 1. Stereo image pair #40 of the sequence; (a) and (b) are original left and right
images. (c) ground truth data in gray-scale encoding: light = close, dark = far, white
= occlusion. (d) color key for encoding optic flow. (e) ground truth optic flow.

objects (and background). The following algorithms are used in our performance
evaluation:

Horn-Schunck algorithm (HS) we use the program as available in the OpenCV
library [12].

Combination of Local and Global (CLG) optimization [19]. We used an imple-
mentation from the .enpeda.. group (see acknowledgment).

BBPW; is named after the initials of surnames of all the four co-authors of [16].
We used an implementation also from the .enpeda.. group (see acknowledgment).

3 Evaluation Approach

The algorithms were tested using the original sequence and with the same se-
quence corrupted with different types and magnitudes of noise. For the stereo
algorithms we analyzed the stereo pair at each time frame, and for the motion
algorithms only the left images.

In the following we introduce the used data set, the noise that we add to
the sequence, how we add this noise, and the quality metrics to evaluate the
algorithms.

3.1 Data Set and Visualization

For our experiments we use a long sequence of 100 synthetic stereo image pairs
and ground truth data (for stereo and motion algorithms), which are all available
on [4], see also [5]. To visualize the stereo results we use gray scale encoding:
light for closer objects and dark for objects further away. The color key that we
use to visualize the motion results uses hue for direction and intensity for vector
size; dark to light means small to large as seen in Figure 1(d).

3.2 Noise

A mobile platform has to deal with non-controlled environments. Thus, we con-
sider it necessary to test the robustness of the algorithms in different situations.



(a) Blurred image. (b) Bright altered image. (c) Gaussian noise added
image.

Fig. 2. Corrupted left image #40 (see Fig. 1(a)).

Therefore, we corrupt our data set with three different kinds of noise: bright-
ness differences, blurring, and Gaussian white noise. As a consequence of the
movement of the platform, brightness on images can change from one frame to
another or even between the left and right image in the same frame of a stereo
sequence. Blurring may be caused by differences in the focus of the lenses due to
movements of the platform. Gaussian noise is present in images taken, even with
modern camera technology. Note that we are aware that this may not be an ex-
tensive noise list, but it is sufficient to show the importance of testing algorithms
in different conditions.

To alter the brightness of the images, we add a constant brightness c to each
pixel of every image. Blurring was applied to the sequence by convolving the
images with a Gaussian smoothing kernel of size k. Finally, the Gaussian noise
was generated by adding at each pixel random Gaussian (normal distribution)
white-noise N (µ, σ), with a mean µ of zero, and a varying standard deviation
σ. The parameters are varied over the sequence and presented in Table 1.

Left Image Right Image
Noise Method 1 ≤ t ≤ 50 51 ≤ t ≤ 100 1 ≤ t ≤ 50 51 ≤ t ≤ 100

Brightness c = t− 50 c = 50− t

Gaussian Noise σ = t No noise σ = t σ = 101− t

Gaussian Blur k = 2 t− 1 No noise k = 2 t− 1 k = 203− 2 t

Table 1. Noise added to image sequence.

To evaluate the motion algorithms we modify the left images using the param-
eters defined for the right images (Table 1), with the exception of the brightness
constant: where c = t− 52 is used for even t and c = 51− t for odd t.

3.3 Quality Metrics

In this subsection we introduce the metrics that we used to evaluate the chosen
algorithms. These are commonly used metrics. For stereo algorithms, following
[13] and [3], we use the following metrics:



RMS (root mean squared): This is the difference in computed disparity d(x, t),
from one of the algorithms, and the ground truth disparity d∗(x, t). RMS is
defined as

R(t) =

√√√√ 1
N

∑
Ω

(
d(x, t)− d∗(x, t)

)2

(1)

where N is the number of pixels in the image domain Ω.

% Bad Pixels: This is the number of badly estimated disparities in the image
domain, defined as

B(t) =
1
N

(∑
Ω

(∣∣d(x, t)− d∗(x, t)
∣∣ > δd

))
× 100% (2)

where δd is a threshold for the allowed disparity error. We use thresholds δd = 1
or = 2 to determine robustness.

For motion algorithms we use the following two metrics, also used (for ex-
ample) on [17].

AAE (Average Angular Error): This is the average angle between the ground
truth vector u(x, t) and the vector u∗(x, t) obtained by the algorithm of each
pixel of the frame t:

A(t) =
1
N

∑
Ω

arccos
(

u · u∗
||u||||u∗||

)
, (3)

where || · || denotes the Euclidean norm.

EPE (End Point Error): This is defined as the average length of the differences
of the ground truth vector and the calculated vector of every pixel of the images
for each frame:

E(t) =
1
N

∑
Ω

||u− u∗||. (4)

The metrics used here allow analysis performance similar to the approach
used by Middlebury [2], but as we are working with long sequences, we can
make statistical inference from the obtained data; such as the mean, zero-mean
variance, maximum and minimum, for each error metric over the sequence.

4 Results

In this section we present the results for the stereo and motion algorithms. For
the stereo algorithms we present only a few graphs and images, as the detailed
results can be found in [13].



(a) Results for AAE over the original
sequence.

Algorithm Mean St. Dev. Min. Max.

BBPW 25.01 26.01 13.87 47.11
CLG 64.42 64.45 62.11 70.28
HS 69.76 69.78 66.74 75.86

(b) Results for EPE over the original
sequence.

Algorithm Mean St. Dev. Min. Max.

BBPW 2.58 2.64 1.69 3.99
CLG 3.09 3.10 2.95 4.18
HS 4.55 4.56 4.41 5.53

Table 2. Results for the original sequence.

Noise-Free Results: The results obtained with the original sequence are the
base for the robustness analysis. For motion algorithms BBPW perform the
best with both metrics followed by CLG, see Table 2. In the AAE graph, see
Figure 3(a), a considerable difference in magnitude, between BBPW and the
other two, is obvious. It is worth to say that for EPE, CLG performs better
than BBPW, and its range is the minimum one of all three techniques, see
Figure 3(b) and Table 2(b). For examples on images obtained with the three
algorithms see Figure 5. For stereo algorithms, the best one for both metrics are
the SGM algorithms, followed by BP and finally the DP algorithms, see Fig-
ure 6. The difference in magnitudes between the SGM algorithms and the other
ones is noticeable. The best algorithm was SGM BT and the best among the DP
algorithms is DP closely followed by the other three. For these sequences RMS
and BPP show almost the same information. For resultant images of the three
top algorithms, with respect to RMS, see Figure 6.

Gauss Blur Results: BBPW outperforms the other motion algorithms with
both metrics. With AAE all the algorithms improve their performance with
respect to the noise-free results, except for CLG when the blurring is maximum;
the change in magnitude is highly noticeable. Compare Figures 3(a) and 7(a) and
Tables 2(b) and 3(b). The three algorithms behave the best when the amount
of blur is medium and peak when the blur is minimum and maximum. The
improvement is most likely because all the algorithms improve their performance
on the road area.

For EPE, the behavior of the three algorithms is similar. The maximum
error (around frame 50) is where it is expected: when the blurring is maximum.
The improvement with a medium amount of blurring is also notorious with this
metric for BBPW and CLG, but for HS it is not. See Figure 7(b) and Table 3(b).

The interesting observation for the stereo algorithms is that when the blurring
is in both images, the results are not so bad, but when the blurring is removed
from the left image, the results get worse for all algorithms. Again SGM BT is
the best, SGM MI seems to have the same problem if both images are blurred, or
just one. For BPP the interesting point is that both DP and DPt ranked higher
than SGM MI (see Figure 8).

For examples of the resultant images over the blurred sequences with both
kind of algorithms see Figures 9 and 10.



(a) AAE on original sequence. (b) EPE on original sequence.

Fig. 3. Results of motion algorithms over original sequence.

(a) RMS on original sequence. (b) BPP with δ = 1 on original sequence.

Fig. 4. Stereo results for the original sequence.

(a) BBPW (b) CLG (c) HS

Fig. 5. Results of the analysis with the motion algorithms of frames 40-41 of the original
sequence.



(a) SGM-BT (b) SGM-MI (c) BP

Fig. 6. Results of the three top stereo algorithm (from left to right) for image pair No.
40 of the original sequence.

(a) AAE on blurred sequence. (b) EPE on blurred sequence.

Fig. 7. Results of motion algorithms over the blurred sequence.

(a) RMS on blurred sequence. (b) BPP with δ = 1 on blurred sequence.

Fig. 8. Stereo results for the blurred sequence.



(a) Results for AAE over the blurred se-
quence.

Algorithm Mean St. Dev. Min. Max.

BBPW 17.56 18.26 8.65 38.74
HS 37.14 69.78 23.16 76.20
CLG 53.59 54.95 28.45 73.45

(b) Results for EPE over the blurred
sequence.

Algorithm Mean St. Dev. Min. Max.

BBPW 1.53 1.67 0.68 3.34
CLG 2.80 2.83 2.01 4.09
HS 3.29 3.34 2.49 4.72

Table 3. Results for the blurred sequence.
(a) Results for AAE over the bright al-
tered sequence.

Algorithm Mean St. Dev. Min. Max.

CLG 112.82 114.96 63.57 147.59
BBPW 132.92 140.94 24.89 207.73
HS 142.00 143.87 68.53 167.36

(b) Results for EPE over the bright al-
tered sequence.

Algorithm Mean St. Dev. Min. Max.

CLG 4.01 4.04 2.98 5.21
HS 7.48 7.67 4.45 10.84
BBPW 20.98 25.43 2.08 46.94

Table 4. Results for the bright altered sequence.

Brightness Difference Results: This was the noise that had the biggest im-
pact on the results for both stereo and motion algorithms. The ones that perform
the best with the original sequence are the worst in this case, except for BBPW
which ranked as the second worst. SGM BT and BP are tremendously affected,
while SGM MI and the dynamic programming algorithms are relatively robust
to this kind of noise, see Figure 12.

For the flow algorithms, CLG was the best and BBPW produced useless
data until the difference in brightness is around 10%, see Figure 11 and Ta-
ble 4. Whereas, in every frame some data can be recovered from CLG and HS.
Examples of the obtained images with both algorithms over the bright altered
sequence are presented in Figure 13.

Gauss Noise Results: The algorithms are very sensitive to this kind of noise
too. In this case BBPW was the best for AAE and CLG for EPE, see Tables 5(a)
and 5(b). For the latter metric there is a noticeable overlapping in the graphs for
all of the algorithms, see Figure 15. For stereo, SGM BT is the best algorithm,
and among dynamic programming algorithms, DPt is the best and DP the worst,
see Figure 16. The difference between them is enough to make DPt the best
overall (see Table 6(a)) dynamic programming algorithm. SGM BT and BP are
relatively robust to this alteration of the images. Example of resultant images
for both kind of algorithms on the Gaussian noise altered sequence are presented
in Figures 17 and 18.

4.1 Algorithm Results

In this section we analyzed the performance of each motion algorithm. For the
corresponding analysis of the stereo algorithms see [13].

BBPW: Was the best algorithm with AAE and the worst one with EPE, see
Figure 19. It was the most affected algorithm by the brightness changes, where



(a) BBPW (b) CLG (c) HS

Fig. 9. Results of the analysis with the motion algorithms of frames 40-41 of the blurred
sequence.

(a) SGM-BT (b) BP (c) SGM-MI

Fig. 10. Results of the three top stereo algorithm (from left to right) for image pair
#40 of the blurred sequence.

(a) AAE on bright altered sequence. (b) EPE on bright altered sequence.

Fig. 11. Results of motion algorithms over the brightness altered sequence.



(a) RMS on brightness altered sequence. (b) BPP with δ = 1 on brightness altered
sequence.

Fig. 12. Stereo results for the brightness altered sequence.

(a) BBPW (b) CLG (c) HS

Fig. 13. Results of the analysis with the motion algorithms of frames 40-41 of the
brightness altered sequence.

(a) SGM-MI (b) DP (c) SGM-MI

Fig. 14. Results of the three top stereo algorithm (from left to right) for image pair
No. 40 of the brightness altered sequence.



(a) AAE on Gaussian noise. (b) EPE on Gaussian noise.

Fig. 15. Results of motion algorithms over the Gaussian noise altered sequence.

(a) RMS on Gaussian noise altered se-
quence.

(b) BPP on Gaussian noise altered se-
quence.

Fig. 16. Stereo results for the Gaussian noise altered sequence.

(a) BBPW (b) CLG (c) HS

Fig. 17. Results of the analysis with the motion algorithms of frames 40-41 of the
sequence with white Gaussian noise.



(a) Results for AAE over the Gaussian
noise altered sequence.

Algorithm Mean St. Dev. Min. Max.

BBPW 61.18 63.98 14.41 118.64
CLG 87.61 87.61 65.73 97.82
HS 90.00 90.48 70.12 113.03

(b) Results for EPE over the Gaussian
noise altered sequence.

Algorithm Mean St. Dev. Min. Max.

CLG 3.34 3.35 3.02 4.52
BBPW 3.59 3.70 1.42 7.16
HS 4.80 4.79 4.48 6.02

Table 5. Results for the Gaussian noise altered sequence.

(a) SGM-BT (b) SGM-MI (c) BP

Fig. 18. Results of the three top stereo algorithm (from left to right) for image pair
No. 40 of the sequence with white Gaussian noise added.

only a few resultant images can offer some useful data. It is also sensitive to
the Gaussian noise. For the blurred sequence, it can be seen that there is an
improvement when the blurring is between low and medium; when the blurring
was maximum the results got worst. This improvement is more notorious for the
EPE metric. It has to be said that when the noise magnitude of any noise is low,
the difference in the error’s magnitude between this algorithm and the other two
is considerably large.

CLG: CLG is the best for the EPE metric. When the Gaussian noise is maxi-
mum, it behaves better than BBPW. The blurred sequence showed improvement
too, but smaller that the other two algorithms. It was the least affected by the
brightness changes. See Figure 20.

HS: HS was the worst algorithm for AAE, but the second for EPE. What is in-
teresting with this algorithms, is that its improvement with the blurred sequence
it is the most noticiable one and, even when the blurriness is maximum, there is
still some improvement. See Figure 21.



(a) BBPW results for AAE. (b) BBPW results for EPE.

Fig. 19. Results of BBPW.

(a) CLG results for AAE. (b) CLG results for EPE.

Fig. 20. Results of CLG.

4.2 Summary

In Table 6, we present the overall statistics for the motion algorithms. For AAE,
BBPW is clearly the best (with respect to the mean and standard deviation) for
the sequences analyzed here. However, note that its range is the largest one, due
to the very bad results that were obtained with the brightness altered sequence.
The bad results with this sequence were compensated with the improvement on
the blurred sequence. It is worth noting that for EPE, in the overall statistics,
BBPW was the worst algorithm, once again due to results obtained with the
bright altered sequence. CLG was the best for this metric. Finally, HS show an
improvement with the blurred sequence, but it has also a bad performance with
the brightness altered sequence.

For stereo algorithms (see Table 7) the one with better overall performance
was SGM MI, with all the metrics used (for stereo algorithms) in this paper.
Note that SGM BT outperform best than SGM MI in all the sequences except



(a) HS results for AAE. (b) HS results for EPE.

Fig. 21. Results of HS.

(a) Overall motion results for AAE.

Algorithm Mean St. Dev. Min. Max.

BBPW 59.17 158.01 8.65 207.73
CLG 79.57 167.52 28.45 147.59
HS 84.72 187.83 23.16 167.36

(b) Overall stereo results for EPE.

Algorithm Mean SD0 Min. Max.

CLG 3.31 6.72 2.01 5.21
HS 5.03 10.67 2.49 10.84
BBPW 7.17 25.89 0.68 46.94

Table 6. Overall results for motion algorithms over the four sequences.

in the brightness altered one, where its performance was not good at all. The DP
algorithms were the worst ones for RMS, with DPt performing the best among
them. It is worth saying that DPt has a better overall performance than SGM
MI for the Bad Pixel metrics, see Table 7(b). BP was always below the two best
algorithms, showing its worst performance in the bright sequence as with SGM
BT.

5 Conclusions and future work

In this paper we presented an approach to evaluate the robustness of stereo and
motion algorithms over a long synthetic sequence. In order to do this we tested
several algorithms over a long synthetic sequence, which was corrupted with
different kinds of noise. From our results it is clear that most of the algorithms
are very sensitive to brightness differences. This has to be highlighted as changes
in illumination is one of the most common problems that mobile devices have
to deal with. The SGM BT stereo algorithm, whose results were the worst with
this type of noise, was the best in all the other sequences. A similar behavior
presented the BBPW motion algorithm. As a direct consequence of using long
sequences we were able to observe that DPt represent a good option for the
dynamic programming algorithms. The future work will include a wider set of
noise types, more challenging sequences (real ones), a more in depth study on the



(a) Overall motion results for RMS.

Algorithm Mean St. Dev. Min. Max.

SGM MI 7.23 20.45 2.61 23.95
SGM BT 11.21 36.51 1.52 46.45
BP 15.41 39.73 6.99 40.92
DPt 20.56 41.47 19.30 29.49
DP 21.00 42.37 19.30 30.28
DPs 21.40 43.37 19.32 32.63
DPts 21.54 43.58 19.48 32.69

(b) Overall stereo results for BPP.

Algorithm Mean SD0 Min. Max.

SGM-MI 3.36 11.67 0.59 15.10
DPt 4.57 11.19 2.78 15.29
DP 5.18 12.76 2.78 17.78
SGM-BT 6.07 22.16 0.17 30.23
DPs 6.07 15.75 2.93 22.40
DPts 6.21 15.41 3.21 20.87
BP 9.70 32.13 1.18 37.27

Table 7. Overall results for stereo algorithms over the four sequences.

quality metrics and a way to evaluate precisely the performance of the algorithms
when there is no ground truth available.
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