
Affine Shape Adaptation
of Blobs Moving in 3D Space

Jorge Sánchez and Eduardo Destefanis
Centro de Investigación en

Informática para la Ingenierı́a
UTN, Córdoba, Argentine

Email: {jsanchez,edestefanis}@scdt.frc.utn.edu.ar

Reinhard Klette and Sandino Morales
The .enpeda.. Project

Tamaki campus
The University of Auckland, New Zealand

Email: {r.klette@auckland.ac.nz,pmor085@aucklanduni.ac.nz}

Abstract—The paper studies new constraints that characterize
a 3D–motion field as observed from the relative motion of a
camera. Such constraints are derived from the relative change
in size of observed local image regions over time.

To consider the image distortions that arise in a projective
camera, a modified affine shape adaptation scheme is proposed
for the case of blob detection, with an emphasis on robustness
under important viewpoint changes and changes in lighting
conditions. The resulting features and constraints are used to
characterize the motion of an ego-vehicle by means of their
navigation angles.

We present results on synthetic as well as on real-world image
sequences.

I. INTRODUCTION

The estimation of motion fields is still a challenging task for
vision-based driver assistance systems (DAS), where motion
vectors are often relatively long even if sequences are taken at
a frame rate of more than 30 Hz. This paper suggests a way
to derive 3D directions of observed 2D motion vectors, which
allows a more consistent interpretation of calculated motion
fields.

Note that a 3D direction of a motion vector is not yet
defining its pose, which would also require to identify its
position (e.g., via stereo analysis). Algorithms for identifying
the 3D pose of projected motion vectors (known as range flow)
have been studied, for example, in [19] (and subsequent papers
by the same authors). However, the applied methodology
differs from the one suggested in this paper.

Our approach uses information provided by observed
changes in size (scale) of local image regions over time, when
a single camera moves relatively to the scene. This is known
to be a very important source of information for the visual
perception of motion.

We consider a first order (affine) approximation to model
the projective distortions that arise during the imaging process.
This is justified by assuming that surface patches in the world
are locally planar.

Image regions considered in our work are blobs, which
corresponds to locally uniform regions of the image. This kind
of feature has demonstrated to be the most stable one under
viewpoint changes as well as other conditions [17].

Technically, we start with the affine adaptation scheme as
proposed in [4], [8] and its versions in [1], [16], characterized

by some modifications proposed for the case of blob detection.
The resulting affine image features are used to model some
characteristics of relative 3D–motion of the camera.

The paper is organized as follows: Section II gives a
brief overview of the method employed for the estimation of
image deformations. Section III provides some considerations
regarding the algorithm presented in [16] for the case of
affine blob detection, and proposes corresponding modifica-
tions. Section IV presents new constraints for a 3D trajectory
of a surface patch in terms of its projected images along
this trajectory, and those are used to estimate the so-called
navigation angles. Finally, Sections V and VI present some
experiments and conclusions, respectively, regarding synthetic
and real-world data.

II. AFFINE SHAPE ADAPTATION

Based on scale-space theory (see [6], [7], [22]), the affine
shape adaptation algorithm was proposed in the context of
shape from texture as a way to iteratively estimate the affine
deformation of an image region (see [4], [8]), where suchs de-
formations are estimated using the multi–scale second moment
descriptor, wich is defined as follows

µ(·; Σa,Σb) = g(·; Σb) ∗
(
∇L(·; Σa)(∇L(·; Σa))T

)
(1)

with

g(x; Σ) =
1

2π
√

det(Σ)
exp

(
−xT Σ−1x

2

)

In the above expressions, the symbol ∗ represents the convolu-
tion operator, L : R2×MSPD → R is the affine scale-space
representation of the image,1 and ∇Lf (·; Σa) its gradient,
computed at the (anisotropic) scale Σa. The matrix (1) can
be seen as the second moment of a stochastic variable, where
the scale-matrix Σb reflects the integration region over which
the statistics is collected.

It follows that the computation of the second moment
descriptor involves convolutions with non–uniform Gaussian
kernels which do not obey (in general) the separability prop-
erty of their uniform counterparts; thus they do not allow for
efficient recursive implementations [2], [23]. In [1] and [14]

1MSPD denotes the set of semi-positive definite matrices.

such convolutions were carried out in a transformed domain,
obtained by whitening the shape matrix of the corresponding
Gaussian kernels. More formally, let Σ ∈ MSPD be the
covariance matrix of a non-uniform Gaussian, defining a
quadratic form as follows:

xT Σ−1x = xT
(
aΣ

1
2
0 Σ

1
2
0

)−1
x =

(
Σ−

1
2

0 x
)T 1

a

(
Σ−

1
2

0 x
)

where Σ 1
2 ∈ MSPD denotes the square root matrix of Σ.

Thus, smoothing with an anisotropic kernel, given by Σ in the
original domain, is equivalent to a smoothing with a circularly
symmetric kernel η = Σ−

1
2

0 ξ of variance a in the transformed
domain. Also, in order to reduce the search space, the Σ–
matrices are usually restricted to be proportional to each other,
as Σa = aΣ and Σb = bΣ for some matrix Σ.

A. Properties of linear transformations and fixed points con-
ditions

Let B be an invertible linear transformation of the spatial
domain R2 and f(ξ) = h(Bξ) the transformed image under B.
Let Lf and Lh, both from R2×MSPD into R, be the affine-
scale space representations of images f and h, respectively.
It can be shown [8] that under a such (invertible) linear
transformation, the second moment matrix descriptor behaves
as

µ(q; aΣf , bΣf) = BT · µh(p; aΣh, bΣh) ·B (2)

where p = Bq and Σh = BΣfBT . Following [8], let
µf (q; Σa,f ,Σb,f) = Mf and let consider that the covariance
matrices are computed in such a way that the following two
conditions

Σa,f = aM−1
f Σb,f = bM−1

f (3)

are met. Considering a linear transformation of the spatial
domain, and using (2) and (3), follows that

Σa,h = BΣa,fBT = aBM−1
f BT = aM−1

h

This shows that the fixed point conditions (3) are preserved
under an invertible linear transformation. The considered itera-
tive algorithm for shape adaptation is based on such a property.

B. Transformation Properties of Corresponding Regions
Consider (as before) two images f and h. Let us suppose

that they are images of a surface that can be locally approx-
imated by a plane. Under this condition, the images can be
related to each-other by an unknown affine transformation.

Let us also suppose that, for corresponding points on
those images, the shape adaptation matrix was independently
computed. As showed in [15], the linear transformation B can
be recovered, up to an arbitrary orthogonal matrix W , from
the shape adaptation matrices as follows:

B = µ
− 1

2
h Wµ

1
2
f (4)

For a given image structure, the change in scale of corre-
sponding regions (under an assumed affine transformation) is
then given by the determinant of the transformation matrix of
Equation (4).

Algorithm 1: Affine blob detection.
1: Initialize U (0) = I .
2: Normalize the window W (xw) = f(x) centered at x(k), with

U (k−1)x(k−1)
w = x(k).

3: Select the integration scale a(k) from the scale extrema of the
normalized operator used for scale selection.

4: Select the local scale b(k) = γa(k) which maximise an isotropy
measure, given in terms of the µ-matrix.

5: Refine the spatial location of the interest point and update their
location on the original domain, x(k).

6: Compute the second moment matrix for the updated x(k)
w , a(k)

and b(k) and compute their inverse square root µ(k)
adapt =

µ−
1
2 (x(k)

w , a(k)I, b(k)I).
7: Update the shape adaptation matrix U (k) = µ(k)

adaptU
(k−1) and

normalize it in such a way that λmax(U (k)) = 1, ensuring that
the image patch will be enlarged in the direction of λmin(U (k)).

8: if the affine shape is not yet close enough to a perfectly isotropic
structure then

9: goto Step 2
10: end if

Fig. 1. Basic outline of an affine region detector [14].

III. AFFINE BLOB DETECTION

Given an image f : R2 → R and an initial point with
detected location x and scale a, the algorithm in Figure 1
provides a basic outline of the Harris–affine and Hessian–
affine region detectors (for a detailed description, see [14]);
those will serve as our starting point for considerations about
blob detection. These detectors use the normalized Laplacian
operator for scale selection ([7], [10]) and – as the name
suggests – the Harris measure [16] and the determinant of the
Hessian matrix, respectively, for the spatial location of feature
points.

There exist experimental results which show that the nor-
malized Laplacian provides a maximum number of scale
extrema compared to other choices [15]. This operator is
also the base of the popular Difference of Gaussians (DoG)
pyramid used by the SIFT detector [11]. The affine region
detector, developed in the presented work, uses the normalized
Laplacian both for scale selection and spatial localization, and
is therefore referred to as LoG-affine detector.

As already said, this adaptation algorithm works in the
transformed image domain. The final adaptation matrix U is
defined by the concatenation of those U (k)-matrices, estimated
in all the previous iteration runs, and is initially set equal to
an identity matrix.

In order to reduce the number of iterations needed for
convergence, the local scale is selected as the one which
maximizes the eigenvalue ratio Q = λmin(µ)/λmax(µ). It
is easy to see that Q ∈ [0, 1] where Q = 1 corresponds to the
perfect isotropic case.

A. Considerations for the case of blob detection
1) Scale selection step: The scale selection step of the

shape adaptation algorithm re-estimates (for the current it-
eration run) the characteristic scale of the brightness pattern
associated to the given point with coordinates x(k). This is

justified by the fact that during each iteration run, the image
pattern is deformed in order to compensate for the (current
estimate of) the affine distortion, changing the relative size of
the pattern, thus making a re-detection necessary.

Such an estimation is done by looking for local extrema
on the response of the scale-space operator used for scale
selection, in a local neighborhood (in scale) of the current
estimate a(k). [14] used a range of a(k) = b2a(k−1), with
b = 0.7, . . . , 1.4.

At each step of the algorithm, the warping matrix U (k)

is normalized by ensuring λmax(U (k)) = 1. As pointed out
in [15], this has the effect of expanding the image pattern
in the direction of the minimum eigenvalue of the U -matrix.
This expansion increases the area of the uniform region that
represents the actual blob, increasing also their associated
characteristic scale.

In the case where the initially detected blob undergoes a
significant affine deformation, the corresponding warping of
the region may have the impact that scale extrema fall outside
of the scale search interval (i.e., we are loosing the point due
to a ‘no detection of integration scale’). At this moment, and
after the U (k)-matrix is estimated, it is important to correct
the actual estimate of a(k) for the mentioned change in size,
before a further estimation of characteristic scale takes place.

One way to introduce such a correction factor is by means
of the area ratio of the ellipses associated to the quadratic form
xT µ(ν)x = 1, with ν ∈ {k, k−1}. Thus, the integration scale
should be affected by the factor

ck =
λmin(µ(k−1)) · λmax(µ(k−1))

λmin(µ(k)) · λmax(µ(k))

prior to the normalization step.

(a) (b) (c)

Fig. 2. LoG-affine detector. a) standard algorithm, b) correction of the
integration scale prior to the window normalization step and c) normalization
of the U -matrix to enforce constant area.

Figure 2 shows a real example of the inclusion of such
a correction into the affine adaptation procedure. Figure 2(a)
illustrates a detection obtained from the ‘standard’ algorithm,
as described in Section III. The test pattern corresponds to
two planes with circular black blobs. These two planes are
approximately orthogonal to each other. It can be seen that
for most of the blobs on the right plane, the algorithm fails
to converge. The shown ellipses correspond to detected blobs,
and are displayed in such a way that their area is

√
2 times the

detected scale, and their shape is given by the matrix UT U .
Figure 2(b) illustrates a detection obtained by correcting

the integration scale in each iteration run of the algorithm,
as described above. Observe that, as expected, the number of

regions lost by non-detections of characteristic scales were
reduced.

2) U -Normalization at important viewpoint changes: As
mentioned before, the normalization of the U -matrix by
λmax(Uk) produces a displacement of the characteristic scales
towards larger values. This effect can be appreciated on the
right plane of Figure 2(b). With patterns undergoing important
viewpoint changes, that could be a serious problem if one
relies on the detected scale for further processing.

In order to overcome this, a possible alternative is to nor-
malize the U (k) matrix in such a way that the area of blobs re-
mains constant during the iterations. This corresponds to a nor-
malization of the U matrix by the square root of the product of
their eigenvalues, U (k)

norm = U (k)/
√

λmin(U (k))λmax(U (k)).
Figure 2(c) shows results when applying such a U -

normalization in the affine adaptation procedure. Note that
resulting scales and shapes of the final estimates correspond
now to the actual (physical) blobs, even if such blobs are
imaged under quite different viewpoints. It is important to note
that, with this normalization of the U -matrix, there is no need
to correct the integration scale, and we may use factor ck = 1
during all the iteration runs.

3) Lighting Conditions: Besides some modifications in the
adaptation scheme, some degree of robustness against changes
in lighting conditions is also desirable. Regarding the shape
adaptation matrix, [9] proposed the so-called centered second
moment matrix, defined as follows:

ν(·; Σa,Σb) = g(·; Σb) ∗
(
∇L(·; Σa)(∇L(·; Σa))T

)

− (∇L)(∇L)T

where ∇L = g(·; Σb) ∗ ∇L(·; Σa). The centered second
moment matrix has the same behavior as the non-centered
counterpart, as both behave as in Equation (2) for a linear
transformation of the spatial domain. It’s also easy to see, that
this centering makes shape adaptation invariant with respect
to linear changes in image brightness.

IV. DERIVATION OF MOTION CHARACTERISTICS

Ideas presented so far may be used (like a guide) to infer
some additional motion characteristics, usually not taken into
account in standard optic-flow techniques.

A. Moving Surface Patch
Let us consider a projective camera of focal length l. A

point X = (X, Y, Z)T in the 3D space is projected onto a
point x = (x, y)T =

(
lX

Z , lY
Z

)T on the 2D image plane.
As in [5], be Ω a surface patch that moves relatively to

the camera, and Ωt and Ωt+1 their projections onto the image
plane at times t and t + 1, respectively; see Figure 3. Let us
suppose that Ω can be locally approximated to be incident
with the plane E : Z = pX + qY + d located in the three-
dimensional space. Let be At and At+1 the area measures of
Ωt and Ωt+1 respectively. It follows that

At =
∫

Ωt

dx dy =
∫

Ω
det (Jt) dX dY (5)

Fig. 3. A moving surface patch Ω, projected into Ωt.

with Jt the Jacobi matrix of the given transformation at time
t. Using the expressions for the imaged point xt and the plane
E, it follows that

det (J) = l2
d

Z3
(6)

and thus for the area measure (for a fixed focal length l) that

At = l2
∫

Ω

d

Z3
dX dY (7)

Let us suppose that the planar patch is located parallel to
the image plane or, in a similar way to the case of a weak-
perspective projection, consider a projection of the surface
patch onto a plane which is parallel to the image plane, and
incident with the centroid of the patch; see the green region
at the bottom right of Figure 3. Let Z̃ be the mean of Z-
coordinates of the patch. In that case, d = Z̃ and the relation
between the projected area and the Z coordinate of the plane
is of the form At ∼ 1/Z̃2.

Let λz be the ratio between area measures at times t and
t + 1. It follows that

λz =
√

At√
At+1

=
Z̃t+1

Z̃t

(8)

Now consider two subsequent images ft and ft+1 of a
recorded sequence, at times t and t + 1, respectively, and,
as before, a surface patch that moves in 3D relatively to the
camera between the time slots when frames t and t + 1 were
taken. Assume that this patch is visible in both frames, say
with centroids at xt and xt+1. For the ratio between the other
two coordinate components of a moving point we have that

λx =
Xt+1

Xt
=

Zt+1

Zt
· xt+1

xt
= λz

xt+1

xt
(9)

λy =
Yt+1

Yt
=

Zt+1

Zt
· yt+1

yt
= λz

yt+1

yt
(10)

In a more compact form, this may be expressed as Xt+1 =
ΛXt, where Λ = diag(λx, λy, λz), and

∆X = Xt+1 −Xt = (Λ− I)Xt (11)

Fig. 4. A tilted camera translating along a plane (top left), motion angles
(tilt) on the ZY -plane (bottom left), and on the ZX-plane (yaw; right).

is the absolute spatial displacement, specifying a scene flow
vector, positioned at Xt.

B. Navigation Angles
Consider a mobile platform (e.g., a car) moving on a planar

surface (e.g., a patch of a road surface of limited area),
as illustrated in Figure 4. From (11) and letting ∆X =
(∆X,∆Y, ∆Z), it follows that the ratios

∆X

∆Z
=

(
λx − 1
λz − 1

)
Xt

Zt
=

(
λx − 1
λz − 1

)
xt

f
(12)

∆Y

∆Z
=

(
λy − 1
λz − 1

)
Yt

Zt
=

(
λy − 1
λz − 1

)
yt

f
(13)

are the tangents of the navigation angles Φzx and Φzy (see
Figure 4). Those angles represent the 3D direction of motion
(between two subsequent frames) for a tracked 3D point.

Now suppose that two shape adaptation matrices were
obtained for two corresponding points xt and xt+1, in images
at times t and t + 1 (as described in Section II-B for a single
point in one image only).2 Let us call these two matrices µt

and µt+1. Recalling Section II-B it follows that

λz =
√

det(B) =

√
det(µt)

det(µt+1)

given an estimation of λz , the navigation angles, θzx and
θzy , are given as arcus tangent of the ratios provided by
Equations (12) and (13). This estimation is done independently
for each of the corresponding features, obtained from frames
at times t and t + 1.

After the estimation of both navigation angles (for all pairs
of tracked points), histograms of these two values are com-
puted. This allows to calculate one summarizing 3D direction,
for all the detected 3D directions between images ft and ft+1.
For this summarizing 3D direction, we decided for

φ̂zx = arg maxθ h(θzx)
φ̂zy = arg maxθ h(θzy)

where h(θzx) and h(θzy) are the histograms of the navigation
angles.

2Note that, if the shape adaptation matrix has been obtained with the
full iterative algorithm, then it can be used as an initial estimate for the
corresponding point, in order to reduce the number of iterations.

To summarize, given a pair of consecutive images, ft and
ft+1, the estimation of the navigation angles, φzx and φzy , is
accomplished by the algorithm of Figure 5.

Algorithm 2: Estimation of navigation angles.
1: Extract from image ft affine blobs, as discussed in Section III.
2: for each adapted blob obtained from the previous step do
3: Set the size of the tracking window proportional to the

characteristic scale of the corresponding blob.
4: Track them from image ft to ft+1 as described in Section IV-C
5: Affine-adapt the tracked point in order to refine their

shape/scale estimate.
6: Estimate the λ-ratios, as described in Section IV.
7: Estimate the navigation angles for the current blob, as de-

scribed in Section IV-B, and update their histograms.
8: end for
9: Obtain a final estimate of φzx and φzy by means of the peak on

the constructed histograms.

Fig. 5. Algorithm for the estimation of the navigation angles.

The estimation of navigation angles relies on the scale ratio
of the tracked blobs; thus, an estimation of such characteristic
scales at sub-scale level is desirable.

One possibility is then to fit a parabola to three points that
determine a local maxima estimated on the scale selection step
of the algorithm of Figure 1, and to refine such an extrema
at sub-scale resolution. Here, one must take into account that
the scale-axis of the scale-space representation is not sampled
linearly. Instead, an exponential sampling is used, where the
scale of the Gaussian kernel that generates the scale level (n)
is obtained from the scale at scale level (n− 1) as follows:

an = kan−1 = kna0 for n = 1, 2, . . . , N − 1 (14)

Obviously, logarithms of those a values must be used for the
computation of an interpolating parabola.

C. Multiscale Tracking

The determination of those navigation angles depends upon
the detection of projected motion (of tracked points) in the
image plane. A popular approach for feature tracking is the
one proposed in [12], for which pyramidal implementations
are available at [18]. Here, one parameter to be selected is
the size of the tracking window, which is usually treated as a
value to be manually adjusted. In the case of blob tracking, this
parameter cannot be kept constant for every feature because
of the variable size of the image blobs, and, more important,
because that image blobs correspond in the general to uniform
regions of the brightness pattern; places where the information
content is low (i.e., textureless regions) leading to aperture-
like problems.

For the presented model, the relative size of image features
are selected automatically. Thus, it is reasonable to set a
tracking window proportional to a detected characteristic scale
(of the feature to be tracked). This specifies a multiscale affine
blob tracking method, which proofed to be well suited for this
task (and possibly others).

Fig. 6. Detection of an affine blob (black disk), and tracking results for
viewpoint and scale changes.

Fig. 7. Images showing tracked blobs and histograms computed for the
estimation of angles φzx (red) and φzy (green).

V. EXPERIMENTS

Figure 6 illustrates one particular experiment for affine blob
tracking, following the approach as described above. A camera
moves freely away from a black disk. In this figure, green and
red ellipses indicate shape (scale) estimations at times t and
t+1, respectively, while the blue box shows the window used
for tracking.

Figure 7 shows two generated histograms obtained for the
synthetic sequence (Set 2 of [3]) and the desktop sequence.

A square window of size (2N + 1) × (2N + 1) was used
for tracking, with N set as twice the characteristic scale of
the blob detected at time t.

Such estimates at time t can be visualized by diagrams for
the whole image sequence. Figure 8 shows such results along
the used test sequences. (Note that this allows a new quality
of analysis compared to short sequences, such as, for example,
currently available on [13].)

The accuracy of estimated values depends in some way on
the magnitude of the relative motion. For points that remain

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

de
gr

ee
s

frame number

Phi_X
Phi_Y

(a)

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

de
gr

ee
s

frame number

Phi_X
Phi_Y

(b)

Fig. 8. Estimation of navigation angles for the (a) synthetic and (b) desktop
sequence.

-40

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250 300

Phi_ZX
Phi_ZY

-80

-60

-40

-20

0

20

40

60

80

0 50 100 150 200 250

Phi_ZX
Phi_ZY

Fig. 9. Results on Sequences 3 (left) and 7 (right) of Set 1 on [3].

almost static, and where the factor λz is close to 1, the
quotients in Equations (12) and (13) are not well defined,
resulting in noisy measurements.

The synthetic sequence was generated with corresponding
navigation angles of φzy = 0◦ and φzy = 0◦. The desk-
top sequence was generated with a calibrated camera, with
translational motion on a rail with fixed navigation angles of
approximately φzx = 12◦ and φzy = −10◦.

The experiments carried out over the synthetic sequence
gave a mean value of 0.13◦ and a standard deviation of
0.57◦ for φzx. For φZ , those values were 0.15◦ and 0.93◦,
respectively.

In the case of the desktop sequence, mean and standard
deviation of φzx are equal to 12.42◦ and 1.43◦, respectively.
For φzy , those values are equal to −10.243◦ and 1.52◦,
respectively, taken over the entire sequence.

Figure 9 shows the estimation of the navigation angles
for two real-world sequences (Daimler sequences 3 and 7,
available in Set 1 on [3]). For these sequences, there is
no ground truth available for navigation angles, and they
are only used as a qualitative (visual) reference. The figure
illustrates the instantaneous estimation of the navigation angles
and, superimposed, results after applying a sliding mean (5
backward, current, and 5 forward values) filter.3 It also shows
some images of the corresponding sequences.

In the case of Sequence 7 (bottom), the estimated directions
Φzx correspond to the steering of the car over the sequence.
In Sequence 3 (top), we observed a low frequency oscillation
in the value of Φzy , starting about at frame 180, when the
‘squirrel’ (actually, a cat) crossed the street and the car made
a breaking maneuver.

The proposed (non-run-time-optimized) algorithm runs at
approximately 0.1 fps on a 3.0 GHz Intel c© Core 2 Duo CPU.

VI. CONCLUSIONS

This work proposes a method for the instantaneous (frame
to frame) estimation of the 3D direction of motion; the
method was studied based on the determination of scale ratios
between tracked blobs. Results may be used for ego-motion
correction of video sequences recorded by the ego-vehicle (by
compensating for estimated tilt and roll angles).

3This sliding mean filter is certainly only a demonstration of filter oppor-
tunities; the design of an appropriate Kalman filter would be an option to
ensure real-time analysis.

Besides some poor estimations for some frames, the pro-
posed method may be recommended as a possible approach for
the use of perceptually very important spatio-temporal cues,
induced on images as an observer (camera) moves relatively
to the scene. The extracted information has the advantage of
being local, allowing robustness in the case of multiple moving
objects. The same principle of scale-ratio estimation could also
be used for motion segmentation, or to add new constraints
to multiple-view approaches of 3D motion estimation, thus
further contributing to the already known coherence between
optic flow vectors and image disparities.

The overall run-time of the algorithm can be significantly
improved by the use of dedicated hardware (FPGA or ASICs).

REFERENCES

[1] Baumberg, A.: Reliable feature matching across widely separated views.
In Proc. Conf. Computer Vision Pattern Recognition, volume I, pages
774–781 (2000)

[2] R. Deriche: Recursively implementing the Gaussian and its derivatives.
In Proc. Int. Conf. Image Processing, pages 236–267 (1992)

[3] .enpeda..: Image Sequence Analysis Test Site: www.mi.auckland.ac.nz/
EISATS

[4] Garding, J., Lindeberg, T., Direct computation of shape cues using scale-
adapted spatial derivative operators. Intl. J. of Computer Vision, 17:163–
191 (1996)

[5] Klette, R.: Shape from area and centroid, In Proc. Int. Conf. Artificial
Intelligence Information-Control Systems Robots, pages 309–314 (1995)

[6] Koenderink, J.J.: The structure of images. Biological Cybernetics,
50:363–370 (1984)

[7] Lindeberg, T. : Scale-Space Theory in Computer Vision. Kluwer Aca-
demic Publishers, Norwell, MA, USA (1994)

[8] Lindeberg, T., Garding, J.: Shape-adapted smoothing in estimation of 3-
d depth cues from affine distortions of local 2-d brightness structure.
In Proc. European Conf. Computer Vision, LNCS 800, pages 389–400
(1994)

[9] Lindeberg, T.: A scale selection principle for estimating image deforma-
tions. In Proc. Int. Conf. Computer Vision, pages 134–141 (1995)

[10] Lindeberg, T.: Feature detection with automatic scale selection. Int. J.
Computer Vision, 30:77–116 (1998)

[11] Lowe, D.: Distinctive image features from scale-invariant keypoints. Int.
J. Computer Vision, 60:91–210 (2004)

[12] Lucas, B., Kanade, T.: An iterative image registration technique with an
application to stereo vision. In Proc. IJCAI, pages 674–679 (1981)

[13] Middlebury Optical Flow website: //vision.middlebury.edu/flow/
[14] Mikolajczyk , K., Schmid, C.: An affine invariant interest point detector.

In Proc. European Conf. Computer Vision, volume I, pages 128–142
(2002)

[15] Mikolajczyk ,K.: Detection of local features invariant to affine transfor-
mations. PhD thesis , INRIA (2002)

[16] Mikolajczyk , K., Schmid, C.: Scale and affine invariant interest point
detectors. Int. J. Computer Vision, 60:63–86 (2004)

[17] K. Mikolajczyk and T. Tuytelaars and C. Schmid and A. Zisserman and
J. Matas and F. Schaffalitzky and T. Kadir and L. Van Gool: A comparison
of affine region detectors. Int. J. Computer Vision, 65(1/2):43–72 (2005)

[18] Open Source Computer Vision Library: www.intel.com/research/mrl/
research/opencv/

[19] Spies, H., Haußecker, H., Jähne, B., Barron, J. L.: Differential range
flow estimation. In Proc. DAGM (1999) 309–316

[20] Tomasi, C. and Kanade, T.: Shape and Motion from Image Streams
under Orthography: a Factorization Method, In: International Journal of
Computer Vision, volume 9 (1992) 137–154

[21] Wedel, A., Vaudrey, T., Rabe, C., Brox, T., Franke, U., Cremers,
D.: Decoupling motion and position of image flow with an evaluation
approach to scene flow. Chapter XX in this book.

[22] Witkin, A.P.: Scale-space filtering. In Proc. Int. Joint Conf. Art. Intell.,
pages 1019–1022 (1983).

[23] I. T. Young, L. J. van Vliet, Recursive implementation of the Gaussian
filter. Signal Processing, 44:139–151 (1995)

