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Abstract—This paper presents an approach to test stereo
algorithms against long stereo sequences (100+ image pairs).
Stereo sequences of this length have not been quantitatively
evaluated in the past. Using stereo sequences allows one to
exploit the temporal information, which is in general not well
used currently. Furthermore, the presented approach focuses
on evaluating the robustness of algorithms against differing
noise parameters (Gaussian noise, brightness differences, and
blurring).

I. INTRODUCTION

With all the stereo algorithms in the computer vision
community, it is hard to decide which algorithms should be
used for different applications, or to decide which algorithm
performs the best under certain situations [1]. Some of the
earliest work done in comparisons of stereo algorithms was
performed in [2]; this publication compared different cost
functions for line-scan stereo algorithms (such as correlation-
based or dynamic programming stereo). The metrics used were
% errors for various regions such as % correct edges matched
and total % error. The test data used was a stereo aerial view
of the Pentagon, made available on [3]. For more recent stereo
test data, see, for example, [4].

Stereo evaluations have also been performed in [6] by
testing different algorithms with several cost functions against
a dataset [5] with known ground truth; images are either
computed by rendering 3D scenes (thus knowing ground truth
via ray-tracing), or show indoor scenes where ground truth is
measured (e.g., by using structured light). Ground truth is then
compared against disparities, estimated by various algorithms,
by Bad Pixel % (using differing error thresholds).

These evaluations focus on accuracy of algorithms, and
for a relatively small dataset. [2] used only one image pair;
evaluations on [5] test against several image pairs, and split
each image pair into three sections: non-occluded areas, dis-
continuity areas, and all areas. The top performing algorithms
have exploited the static nature of the given image pairs, but
do not take into consideration temporal integration. Nor does
any evaluation define or test robustness of stereo algorithms.

Our paper presents an approach to test stereo algorithms
against long stereo sequences (100+ image pairs), which are
also publicly available on the .enpeda.. Image Sequence Anal-
ysis Test Site [7]. Stereo sequences of this length have not been
quantitatively evaluated in the past. Using stereo sequences
allows one to exploit the temporal information (e.g., [8]),
which is in general not well used currently. Furthermore, our
approach focuses on evaluating the robustness of algorithms

against differing noise parameters; Gaussian noise, brightness
differences, and blurring.

The next section introduces our approach for evaluating
stereo algorithms against long stereo sequences, focusing on
robustness of the algorithms. This section also introduces
the dataset and error metrics we use. Section III provides a
summary of the stereo algorithms used in this paper. Sections
IV and V provide the results to our findings. Conclusions and
future work end our paper.

II. APPROACH FOR EVALUATION

Figure 1 highlights the outline of our robustness evaluation.
The left and right images used are identified in Section II-A.
The different types of noise we add are detailed in Sec-
tion II-B. The error metrics used are detailed in Section II-D.
This approach is used over an entire sequence of images, so
the results can be shown over time. This is shown in the results
Sections IV and V.

Fig. 1. Approach for robustness evaluation outlined in this paper.

A. Dataset

Synthetic sequences have been used for evaluation over the
recent history. This is because the ground truth (GT) is easily
obtained, and comparisons can be done using metrics such as
Root Mean Square (RMS) for stereo.

In this paper we perform our evaluation on test data of
Set 2 from the .enpeda.. website [7], a synthetic sequence as
introduced in [9]. This is a long synthetic stereo sequence,
with 100 stereo rectified image pairs. We use the grey-scale
images for our evaluation. (The sequence is also provided in
color.) Ground truth data is available and is what we use for
our calculating our metrics. Examples from the sequence can
be seen in Figure 2.

B. Noise Added to Images

For our robustness approach we chose three different noise
functionals to add to the original images Iin(x, t), where x is
pixel position and t is time (frame #). The three noise functions



(a) Left image (b) Right image (c) GT Disparity

Fig. 2. Sample image pair (number 44) from the synthetic stereo sequence
in Set 2 of [7]. Ground truth disparity colour encoding; light = close, dark =
far, white = occlusion.

we chose were Gaussian white-noise, Gaussian blurring, and
constant intensity change. This list of noise types is not
exhaustive and there are many more variations of noise. This
evaluation is to analyse the noise over the sequence.

Furthermore, we vary the amount of noise throughout the
sequence. From low levels of noise, to very high levels. The
noise is also varied so that only one image is affected by noise
and the other one is not. This is explained in detail below. For
the following subsections, the output image is mapped into the
range 0 ≤ Iout(x, t) ≤ Imax (here, Imax = 255, i.e., 8-bit),
where Imax is the allowed maximum.

1) Constant Brightness: Differences in intensity between
different cameras is a very common issue in real-world im-
agery. For driver assistance systems, this is even more obvious
as a shadow can cover one camera and not the other. We
simulate this difference in brightness with a simple addition
of constant brightness to an image:

∀ x : Iout(x, t) = Iin(x, t) + c (1)

2) Gaussian White-Noise: Small amounts of Gaussian
noise are present in real imagery. The amount of noise has
been and continues to be reduced over time as sensor technol-
ogy improves. We test from small amounts to large amounts
of Gaussian noise [10]. At each pixel in an image, we add
random Gaussian (normal distribution) white-noise N (µ, σ);
with a mean µ of zero, and a varying standard deviation σ.
This is defined as:

∀ x : Iout(x, t) = Iin(x, t) +N (µ = 0, σ) (2)

3) Gaussian Blur: In real imagery, if a camera is slightly
out of focus, then minor blurring can occur. For good optical
lenses, this is reduced dramatically, and visual inspection can
reduce this effect. We approximate this blurring effect with
a Gaussian blurring convolution (as known from scale space
[11]). For an entire image, we convolve the image using
differing Gaussian smoothing kernel sizes:

Iout(x, t) = Iin(x, t) ∗G(k) (3)

where G(k) represents a k × k Gaussian smoothing kernel.

C. Noise Parameters

For our evaluation, we chose to vary the noise throughout
the sequence. For the brightness noise, we chose to start the
left image at a low brightness, and increase the brightness over
the sequence. For the right image we did the opposite (i.e.,

start high and then decrease). For both the Gaussian noise and
Gaussian blur, we increase the parameters through the first
half of the sequence, for both the left and right image. In the
second half of the sequence, the left image has no noise, and
the right image decreases in noise. The specific parameters are
detailed in the table below:

Noise Method Image 1 ≤ t ≤ 50 51 ≤ t ≤ 100

Brightness Left c = t− 50
Right c = 50− t

Gaussian Noise Left σ = t No noise
Right σ = t σ = 101− t

Gaussian Blur Left k = 2 t− 1 No noise
Right k = 2 t− 1 k = 203− 2 t

D. Evaluation Methodology

For our evaluation, we measure two quality metrics for each
image, over the entire sequence of images. These results can
then be evaluated over an entire image sequence. We use some
sample metrics from [6]. These metrics are not exhaustive, but
will allow us to compare robustness.

1) RMS (root mean squared): This is the difference in
computed disparity d(x, t), from one of the algorithms, and
the ground truth disparity d∗(x, t). RMS is defined as

R(t) =

√√√√ 1
N

∑
Ω

(
d(x, t)− d∗(x, t)

)2

(4)

where N is the number of pixels in the image domain Ω.
2) % Bad Pixels: This is the number of badly estimated

disparities in the image domain, defined as

B(t) =
1
N

(∑
Ω

(
|d(x, t)− d∗(x, t)| > δd

))
× 100% (5)

where δd is a threshold for the allowed disparity error. We use
thresholds δd = 1 or = 2 to determine robustness.

Since we are evaluating over the entire sequence, we can
make statistical inference on the sequence data, including
variances, medians, means, and range of error. In this paper,
we will calculate the mean, variance, maximum and minimum
for each error metric over the entire sequence.

III. STEREO ALGORITHMS

The stereo algorithms compared are briefly identified below.
All our approaches are single pixel accurate. They can be
extended to sub-pixel accuracy, but the sub-pixel accurate
algorithms are in scope for future work, not this brief report.

For dynamic programming stereo, we compare a standard
algorithm [12] (DP), against one with temporal (DPt), spatial
(DPs), or temporal and spatial (DPts) propagation; see [13]
for propagation details.

For belief propagation stereo (BP), we use a coarse-to-fine
algorithm [14] with quadratic cost function, as reported in [15]
for Set 1 of [7].

Semi-global matching [16] (SGM) characterizes one of
the top performing stereo strategies, see [5]; it is also used
in commercial applications (e.g., [17]). We chose two cost



functions to contrast and compare effects of noise, mutual
information (SGM MI) or Birchfield-Tomasi (SGM BT).

IV. EVALUATION OF NOISE ACROSS SEQUENCE

This section shows the details of our experimental results.
This includes the evaluation of the algorithms over a long
stereo sequence, along with the robustness evaluation using
noise corrupted input images.

A. Noise-Free Results
Here we present our results using the three metrics identified

in Section II. This is the starting point for our robustness test.
For RMS (Figure 3), it is easy to see that most of the

algorithms follow a similar shape, peaking in the same points
and having small ranges. However, the algorithms show differ-
ent magnitudes in RMS. Clearly, SGM outperforms all other
algorithms, with BT winning over MI, BP follows, and all DP
algorithms are much worse.

Looking at the Bad Pixel % graphs (Figures 21 and 22)
it appears that the graphs both have similar shapes, with a
slightly different magnitude. This indicates that whole pixel
thresholding does not really differentiate algorithms. If an
algorithm is inaccurate by more than a pixel, then it will be
inaccurate by more than two pixels as well. This may not be
true for sub-pixel thresholds, but is outside the scope of this
report.

For all graphs, the rank of accuracy for the algorithms is
clear, and also the same. The Bad Pixel % seems to more
clearly separate the algorithms. This is further highlighted in
Tables I and VII, where the results clearly show that SGM-BT
performs the best. In these tables, and in all of the following
ones, Standard Deviation (St. Dev.) is the zero mean standard
deviation:

σ =

√√√√ 1
N

N∑
t=1

x(t)2,

where x(t) is the error at time t and N is the number of
frames. The increase in St. Dev. from the mean show how
stable is the algorithm. The interesting note is that the two
best algorithms are the ones whose St. Dev. values are farther
away from its respective means.

Fig. 3. RMS; on original images.

Algorithm Mean St. Dev. Min. Max.
SGM-BT 1.81 1.84 1.52 3.24
SGM-MI 2.93 2.95 2.61 4.50
BP 7.22 7.22 7.13 7.61
DP 19.34 19.34 19.30 19.68
DPt 19.35 19.35 19.30 19.68
DPs 19.39 19.39 19.32 19.76
DPts 19.61 19.61 19.48 19.87

TABLE I
RMS RESULTS USING ORIGINAL SEQUENCE.

B. Brightness Difference Results

The tests above were performed on the brightness altered
images. For RMS (Figure 4) it becomes clear there are
very different shaped curves for each algorithm. All the DP
algorithms are not affected much, and also the SGM-MI has
very little degradation. In this case, SGM-MI performs the best
overall, except around the mid-point of the sequence, where
SGM-BT wins. This can be explained because the brightness
difference drops to near zero around this point. SGM-BT
shows very bad results for the rest of the sequence highlighting
that it is not robust to brightness changes at all. The other
main point is that BP has a similar effect to brightness noise
as SGM-BT. This shows that they can both handle brightness
differences of around ±10.

Looking at the Bad Pixel % graphs (Figures 23 and 24) it
appears that the graphs both have similar shapes to the RMS
graph. There is no new information given by this metric.

Tables II and VIII confirm the subjective view. SGM-MI
ranks highest in both cases. DP and DPt rank slightly higher
than the other DP algorithms. SGM-BT and BP presented the
highest difference between their St. Dev and mean, which is
expected from the massive change in error due to brightness.

Fig. 4. RMS; on brightness altered images.

C. Gauss Noise Results

The tests above were performed on the Gaussian noise
added images. For RMS (Figure 5) the shape is as expected; as
the noise increases, the results get worse. At t = 50 the results
get better as the left image no longer has noise. This holds
true for all algorithms except BP, which is not affected much



Algorithm Mean St. Dev. Min. Max.
SGM-MI 2.99 3.00 2.62 4.54
DP 19.34 19.34 19.30 19.67
DPt 19.34 19.34 19.30 19.67
DPs 19.40 19.40 19.33 19.78
DPts 19.63 19.63 19.49 19.89
SGM-BT 31.35 34.64 1.73 46.45
BP 33.52 35.08 7.22 40.92

TABLE II
RMS RESULTS USING BRIGHTNESS-ALTERED SEQUENCE.

Algorithm Mean St. Dev. Min Max
SGM-BT 3.33 3.57 1.70 6.61
SGM-MI 5.50 6.16 2.68 12.74
BP 7.73 7.75 7.17 9.39
DPt 20.30 20.31 19.34 22.32
DPts 21.90 21.94 19.80 25.40
DPs 22.40 22.54 19.39 28.09
DP 22.79 22.62 20.34 27.32

TABLE III
RMS RESULTS USING GAUSSIAN-NOISE SEQUENCE.

by the Gaussian noise. There are clear differences between
the DP algorithms. DPt outperforms the other cost functions
except near the end of the sequence where the noise drops
to very little and then DPs works slightly better. Observe that
DP is the most affected. BP performs poorly, on average being
slightly higher than the DP results. Again SGM using MI and
BT perform the best, with BT being the best in this situation.

The Bad Pixel % graphs (Figures 25 and 26) have slightly
different results to the RMS graphs. On average, the rankings
are similar, but there is more overlap between BP, MI and BT.
However, BT still beats MI for more frames.

The rankings suggested above are backed up by the data in
both Tables III and IX.

Fig. 5. RMS; on Gaussian noise-added images.

D. Gauss Blur Results

The tests above were performed on the Gaussian blurred
images. For RMS (Figure 6) the results for 1 ≤ t ≤ 50 are
surprising. As the Gauss blurring kernel increases, the results
do not get much worse for most algorithms. MI seems to be the

Algorithm Mean St. Dev. Min. Max.
SGM-BT 8.34 10.83 1.84 22.03
BP 13.19 15.36 6.99 28.40
SGM-MI 17.52 19.04 3.19 23.95
DP 22.79 23.14 19.34 30.28
DPt 23.26 23.64 19.32 29.49
DPs 24.38 24.89 19.47 32.63
DPts 25.02 25.47 19.74 32.69

TABLE IV
RMS RESULTS USING BLURRED SEQUENCE.

most affected. (Can this be explained due to the cost function?)
However, after t = 50 when the blurring effect is removed
from the left image, the results get worse for all algorithms.
This type of noise is more realistic as the cameras may have
slightly different blurring effects between them. Again SGM-
BT is the best, followed by BP/MI. MI seems to have the same
problem if both images are blurred, or just one.

The Bad Pixel % graphs (Figures 27 and 28) show a much
higher overlap than the previous noise levels. BT still ranks
the best followed by BP. However, DP and DPt rank close to
BT and are even better than BP for 50 < t < 80 when the
blurring is large in only the right image. The problems with
MI is highlighted even more in this situation.

Tables IV and X further add to the comments above. SGM-
BT wins in both cases, followed by BP. The interesting point
is that, when looking at Table X, both DP and DPt are higher
than SGM-MI. Stating that SGM-MI has more pixels that are
inaccurate, but the inaccurate pixels in DP/DPt are further from
the true value.

Fig. 6. RMS; on blurred images.

E. Summary

Table V shows the summary of RMS results using all data
from the four sequences (original and three noise added). It
highlights the points made in the previous sections. SGM-MI
gets the highest robustness ranking. This may be a little bias
as SGM-BT and BP were both incredibly bad on brightness
altered images.

Table VI shows the summary of Bad Pixel % results.
This table is more interesting, ranking DPt second highest



Algorithm Mean St. Dev. Min. Max.
SGM-MI 7.23 20.45 2.61 23.95
SGM-BT 11.21 36.51 1.52 46.45
BP 15.41 39.73 6.99 40.92
DPt 20.56 41.47 19.30 29.49
DP 21.00 42.37 19.30 30.28
DPs 21.40 43.37 19.32 32.63
DPts 21.54 43.58 19.48 32.69

TABLE V
RMS RESULTS USING ALL FOUR SEQUENCES.

Algorithm Mean St. Dev. Min. Max.
SGM-MI 3.36 11.67 0.59 15.10
DPt 4.57 11.19 2.78 15.29
DP 5.18 12.76 2.78 17.78
SGM-BT 6.07 22.16 0.17 30.23
DPs 6.07 15.75 2.93 22.40
DPts 6.21 15.41 3.21 20.87
BP 9.70 32.13 1.18 37.27

TABLE VI
BAD PIXEL %, δ = 1 RESULTS USING ALL FOUR SEQUENCES.

after SGM-MI. This indicates that the errors in DP are high
when the pixel is incorrectly estimated, but the number of
poorly estimated pixels is still on similar standing to the
better algorithms. DPt gets the added bonus of using temporal
consistency, so acquires better results over DP. If the scene
was not temporally consistent, this would not be the case.

V. ALGORITHM RESULTS

In this section, we show how each algorithm is affected by
the noise components. This more clearly shows how robust
each algorithm is to the different types of noise.

As shown in the previous section, there is no major differ-
ence between Bad Pixel % when using δ = 1 or 2. Therefore
we have omitted δ = 2 from this section. Example disparity
images are shown using each noise type.

A. Belief Propagation - BP

In Figures 7 and 8 it is clear which noise types affect
BP more than the other. Differences in brightness cause the
major issues, but Gaussian Noise seems to be mis-represented
looking at the subjective result.

B. Dynamic Programming - DP

Figures 9 and 10 show clearly that the Gaussian noise makes
incredibly bad results. Even small amounts of Gaussian noise
make the results much worse (looking at the start/end of the
graph). Brightness does not seem to affect the result that much.

C. DP Spatial Propagation - DPs

Figures 11 and 12 show clearly that the Gaussian noise
makes even worse results that DP. This is expected as the
errors will be propagated spatially throughout the image. The
only exception is near the start/end of the graph when the
noise is low. This may make the spatial propagation useful for
real images where the noise content is low. However, blurring
makes the results much worse.

(a) Original (b) Brightness Altered

(c) Gaussian Noise (d) Blurred

Fig. 7. Example disparity results for BP using the different noised images.
Original images and colour encoding as in Figure 2.

Fig. 8. RMS for BP on all images.

D. DP Temporal Propagation - DPt

Figures 13 and 14 indicate that DPt may be the most
robust of all the DP algorithms in this paper. The temporal
propagation helps reduce the effect of Gaussian noise and also
is not affected if both images are blurred at the same time, or
if there are brightness differences. Even when the blurring
effects are only on the right image, DPt is less affected than
both DP and DPs.

E. DP Temporal-Spatial Propagation - DPts

From Figures 15 and 16, it appears that DPts takes both DPt
and DPs into account, creating a worse overall result. This is
not the desired effect, but appears that is what is happening.

F. SGM Mutual Information - MI

From Figures 17 and 18, it shows that the algorithm is pretty
robust in appearance to brightness changes and Gaussian noise.



(a) Original (b) Brightness Altered

(c) Gaussian Noise (d) Blurred

Fig. 9. Example disparity results for DP using the different noised images.
Original images and colour encoding as in Figure 2.

Fig. 10. RMS for DP on all images.

However, for medium amounts of blur, the results are degraded
dramatically.

G. SGM Birchfield-Tomasi - BT

Figures 19 and 20 show that the algorithm is robust in
appearance to all noise except brightness change and single
image blurring. If you ignore the brightness change then this
is the best algorithm by far! However, brightness change is
one of the most common problems in real world situations, so
it very important in this evaluation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated different stereo algorithms, with
different cost functions against long synthetic stereo sequence.
Our approach focused on robustness of the algorithms using
three different noise operators (i.e., brightness difference,
Gaussian noise, and Gaussian blurring).

From our evaluation, we can see that SGM-BT is the
best algorithm on average. However, it is one of the worst

(a) Original (b) Brightness Altered

(c) Gaussian Noise (d) Blurred

Fig. 11. Example disparity results for DPs using the different noised images.
Original images and colour encoding as in Figure 2.

Fig. 12. RMS for DPs on all images.

algorithms when there are brightness differences. In this case,
SGM-MI is the best algorithm, and actually gets the top
ranking using the mean over all images. BP is a good algorithm
on most images, but as soon as any type of brightness change
is introduced, the algorithm becomes unusable. DP is the least
accurate of the algorithms tested, but it proves to be relatively
robust to all types of noise. The DPt is the best of the DP
cost functions, and highlights the importance of using temporal
propagation for stereo algorithms to increase robustness.

Another important finding is that there is little to no
difference between the Bad Pixel % when using a threshold
δ of 1 or 2. Using the RMS value sometimes highlights
differences in algorithm performance more clearly than Bad
Pixel %, and vice-versa. In saying this, the metrics do provide
different rankings overall, with DPt and DP ranking higher
than SGM-BT and BP. This shows that although the algorithm
has pixels with large errors, overall, the number of pixels that



(a) Original (b) Brightness Altered

(c) Gaussian Noise (d) Blurred

Fig. 13. Example disparity results for DPt using the different noised images.
Original images and colour encoding as in Figure 2.

Fig. 14. RMS for DPt on all images.

are incorrect is less.
This brief report highlights the importance of using long

stereo sequences for evaluating algorithms. Future work will
include testing against differing noise models, analysing the
results over time (e.g., moving means, standard deviations),
increasing the size of our data set to test against more/different
data, and analysing the metrics more clearly to help differen-
tiate algorithms.
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Algorithm Mean St. Dev. Min. Max.
SGM-BT 0.24 0.25 0.17 0.65
SGM-MI 0.74 0.74 0.62 1.38
BP 1.23 1.23 1.18 1.54
DP 2.87 2.87 2.79 3.50
DPt 2.87 2.88 2.78 3.50
DPs 3.06 3.06 2.93 3.75
DPts 3.39 3.39 3.24 3.92

TABLE VII
BAD PIXEL %, δ = 1 RESULTS USING ORIGINAL SEQUENCE.

Fig. 22. Bad pixel %, δ = 2; on original images.

Fig. 23. Bad pixel %, δ = 1; on brightness altered images.

Algorithm Mean St. Dev. Min. Max.
SGM-MI 0.76 0.77 0.59 1.42
DP 2.86 2.86 2.78 3.46
DPt 2.87 2.87 2.78 3.46
DPs 3.07 3.07 2.96 3.77
DPts 3.38 3.38 3.21 3.88
SGM-BT 18.68 21.26 0.21 30.23
BP 28.32 30.55 1.26 37.27

TABLE VIII
BAD PIXEL %, δ = 1 RESULTS USING BRIGHTNESS-ALTERED SEQUENCE.

Fig. 24. Bad pixel %, δ = 2; on brightness altered images.



Fig. 25. Bad pixel %, δ = 1; on Gaussian noise-added images.

Algorithm Mean St. Dev. Min. Max.
SGM-BT 1.46 1.77 0.21 3.92
SGM-MI 1.83 2.21 0.74 5.22
BP 2.67 2.87 1.21 5.27
DPt 4.85 5.00 2.91 8.20
DPts 6.77 7.03 3.94 11.80
DPs 7.47 8.21 3.05 15.41
DP 7.49 7.90 4.51 13.69

TABLE IX
BAD PIXEL %, δ = 1 RESULTS USING GAUSSIAN-NOISE SEQUENCE.

Fig. 26. Bad pixel %, δ = 2; on Gaussian noise-added images.

Algorithm Mean St. Dev. Min. Max.
SGM-BT 3.91 6.00 0.26 13.58
BP 6.59 9.44 1.25 19.89
DP 7.49 9.16 2.86 17.78
DPt 7.68 9.15 2.86 15.29
SGM-MI 10.12 11.41 0.91 15.10
DPs 10.70 12.73 3.20 22.40
DPts 11.28 12.85 3.78 20.87

TABLE X
BAD PIXEL %, δ = 1 RESULTS USING BLURRED SEQUENCE.

Fig. 27. Bad pixel %, δ = 1; on blurred images.

Fig. 28. Bad pixel %, δ = 2; on blurred images.

Fig. 29. Bad pixel %, δ = 1; for BP on all images.



Fig. 30. Bad pixel %, δ = 1; for DP on all images.

Fig. 31. Bad pixel %, δ = 1; for DPs on all images.

Fig. 32. Bad pixel %, δ = 1; for DPt on all images.

Fig. 33. Bad pixel %, δ = 1; for DPts on all images.

Fig. 34. Bad pixel %, δ = 1; for MI on all images.

Fig. 35. Bad pixel %, δ = 1; for BT on all images.


