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Abstract

Incidence pseudographs model a (reflexive and symmetric) incidence relation be-
tween sets of various dimensions, contained in a countable family. Work by Klaus
Voss in 1993 suggested that this general discrete model allows to introduce a topol-
ogy, and some authors have done some studies into this direction in the past (also
using alternative discrete models such as, for example, abstract complexes or orders
on sets of cells). This paper provides a comprehensive overview about the topology
of incidence pseudographs. This topology has various applications, such as in mod-
eling basic data in 2D or 3D digital picture analysis, or in describing polyhedral
complexes. This paper addresses especially also partially open sets which occur, for
example, in common (non-binary) picture analysis.
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1 Introduction

An incidence pseudograph [S, I, dim] models a (reflexive and symmetric) in-
cidence relation I between sets c of dimension dim(c) ≥ 0, contained in a
countable family S. (Relation I represents the symmetric completion of the
subset-of-relationship.) This very general discrete model allows to introduce a
topology, and to derive combinatorial formulas assuming some kind of regu-
larity for the underlying geometry of cells c ∈ S. Obviously, the generality of
this model allows for applications in a wide range of situations.

For example, digital (2D or 3D) pictures may be considered to be substructures
of a regular orthogonal grid in (2D or 3D) space, and S would be a set of m-
cells c (i.e., dim(c) = m with 0 ≤ m ≤ 3) in this case; a pixel is a 2-cell, a
voxel is a 3-cell, two pixels are vertex-adjacent if they are both incident with
the same 0-cell, two voxels are face-connected iff they are both incident with
the same 2-cell, and so forth.
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Fig. 1. Figure 5.21 in (7). The three-valued digital picture on the left is shown in
three alternative topological interpretations. From left to right: black is 8-connected
(forming a closed set), and gray is 4-connected (forming an open set), then gray is
closed and white is open, and, finally, gray is again closed, but black is open.

See Figure 1 for 2-cells, 1-cells, and 0-cells of a 2D picture. The sketch in this
figure indicates a partition of the digital plane into those cells, and in case of
more than two values in a digital picture, one of those values defines non-open
and non-closed regions, which will be studied as partially open in this paper.
(For example, in the sketch on the right, black regions are open, there is one
closed gray region, and one partially-open white region.

Definition 1 An incidence structure [S, I, dim] is defined by a countable set
S of nodes, an incidence relation I on S that is reflexive and symmetric, and
a function dim defined on S into a finite set {0, 1, . . . , n} of natural numbers.

Such a structure is called an incidence pseudograph (see Definition 2 below) if
it satisfies additional constraints, such as having only finite sets I(c) (i.e., being
locally finite), or that a node c′ ∈ I(c) cannot be of the same dimensionality
as node c. Incidence pseudographs allow us to model the topology of digital
pictures, or of other discrete objects characterized by elements of varying
dimensionality.

The book (7) decided for the model of incidence pseudographs for discussing
the underlying digital topology of 2D or 3D digital pictures. Equivalently, also
some model based on cells and their dimensionality (9), or on cells and their
order (2) could have been used; however, graphs might be seen as an even
more abstract model compared to families of cells.

Abstract complexes (9) are defined by cells of different dimensionality; see, for
example, (5; 6; 8) for applications of this approach for defining fundamentals
of binary image analysis. The equivalence between abstract complexes and
incidence pseudographs was stated on page 223 in (7): Let [S, I, dim] be an
incidence pseudograph. We define that c < c′ iff

c′ ∈ I(c), c 6= c′, and dim(c) < dim(c′)

Let c ≤ c′ iff c < c′ or c = c′. It follows that [S,≤, dim] is an abstract
complex. Note that the work in (5) (based on cells and their dimensionality)
was mainly motivated by proving the correctness of a 3D surface scanning
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algorithm, which is also a central subject in (4), which defines and applies
digital spaces, which are graph-theoretical models rather than cellular spaces.

Orders on sets of cells have been discussed in (2; 3), also for defining funda-
mentals of binary image analysis. (1) discussed the equivalence of orders on
sets of cells with abstract complexes.

Incidence pseudographs have been introduced in (10) for discussing combina-
torial properties of sets of pixels or voxels, considered to be grid points (note:
not cells!) in 2D or 3D regular orthogonal grids. [Applying the topological
discussion of (7) and what follows below, finite incidence pseudographs as
considered in (10) are open sets.] The discussion of combinatorial properties
(i.e., counts of nodes of various dimensions, and relations between such counts)
has been complemented in (7) by also discussing closed sets. However, in this
paper we will not discuss any of those combinatorial properties, and will focus
on set-theoretical or topological properties instead. In this sense, this paper is
not a review on incidence pseudographs in general by leaving one important
subject fully out of our discussion.

This paper recalls the discussion of topological subjects of incidence pseudo-
graphs as given in (7) in a brief but concise form, and extends it then into
a much more detailed analysis of topological properties of incidence pseudo-
graphs. In particular, this paper aims at presenting a topological concept for
multi-valued (i.e., not just binary) pictures, having not just open or closed
sets, but also partially open sets. Thus, this paper contains various new topo-
logical or set-theoretical results on incidence pseudographs, and the authors
do not compare in every case what has been said already in (7) or not.

The paper is structured as follows: Section 2 introduces into incidence pseu-
dographs. Sections 3 and 6 introduce the auxiliary notions of the rooted set
and a descendence path, respectively. Section 4 introduces components and
regions; subjects of major interest in this study. Section 5 then finally defines
the topology by introducing open and closed sets. Section 7 shows that there is
a unique topological closure for any finite set which has a connected nonempty
core. Open, closed and complete sets are studied in Section 8. Section 9 shows
that there is also a smallest open set containing a given set. Section 10 dis-
cusses a more technical concept (of 0-rooted sets), which is then applied in
Section 11 for studying partially open sets and so-called 0-components and
0-regions. Section 12 concludes this paper.

2 Incidence Pseudographs

Let G = [S, I, dim] be an incidence structure. If n is the maximum of the range
of dim, then we call G an n-incidence structure and say that ind(G) = n. A
node c ∈ S is called an i-cell if dim(c) = i and if i = n we also say c is
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a principal node otherwise we say c is a marginal node of G. The set of all
principal nodes of G is called the core of G, written core(G), or core(M) for
M ⊆ G.

Two nodes p, q ∈ S are connected wrt M ⊆ S iff there exists a finite sequence
{p0, . . . , pn} where

p = p0 and q = pn ,
(∀i ∈ {0, . . . , n} pi ∈M) ∨ (∀i ∈ {0, . . . , n} pi ∈M), and
∀i ∈ {0, . . . , n− 1} pi ∈ I(pi+1) .

The sequence {p0, . . . , pn} is called a path from p to q. If also pi ∈ M , for all
i ∈ {0, . . . , n}, we say that p and q are connected in M .

We say that p and q are connected if they are connected in S. A set A ⊆M ⊆ S
is connected wrt M iff all p, q ∈ A are connected wrt M . We say that A is
connected if A is connected wrt S.

For M ⊆ S, the complement of M is defined as M = M\S. For p ∈ M , the
set {(p, q) : p and q are connected wrt M} ⊆ M defines a complementary
component of M .

Definition 2 An incidence structure G = [S, I, dim] is called an incidence
pseudograph iff it has the following properties:

(1) For all c ∈ S, I(c) is finite.
(2) The core of G is connected.
(3) Any finite set of principal nodes of G has at most one infinite comple-

mentary component of principal nodes.
(4) If c′ ∈ I(c), c′ 6= c, then dim(c) 6= dim(c′).
(5) Each marginal node of G is incident with at least one principal node of

G.

G is said to be monotonic provided

(6) If c′ ∈ I(c), c′′ ∈ I(c′) and dim(c) ≤ dim(c′) ≤ dim(c′′) implies c′′ ∈ I(c).

Digital pictures, and subsets in those, are typically modeled by monotonic
incidence pseudographs. However, those pseudographs allow us to describe
discrete structures in a more general sense, and we also include non-monotonic
pseudographs into our discussion (e.g., assume that blocks are either defined
by bounded polyhedral objects, or a geometric arrangement of a finite number
of blocks; incidence is only defined between polyhedral objects, or blocks of
the same level of construction).

G = [S, I, dim] always denotes an incidence pseudograph in this paper; if
no danger of confusion, a set S uniquely identifies “its” pseudograph G, and
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vice-versa. – For i ∈ N and c ∈ S, we define

Ii(c) = {c′ ∈ I(c) : dim(c′) = i}
Gi(c) = {c′ ∈ I(c) : dim(c′) ≥ i}
G(c) = {c′ ∈ I(c) : dim(c′) > dim(c)}

We state four direct conclusions [with proofs].

If i > j, then Gi(c) ⊆ Gj(c). [Assume i > j and c′ ∈ Gi(c). Thus c′ ∈
I(c) ∧ dim(c′) ≥ i which implies c′ ∈ I(c) ∧ dim(c′) ≥ j. Hence c′ ∈ Gj(c) and
therefore Gi(c) ⊆ Gj(c).]

If i ≤ ind(G), then Gi(c) 6= ∅. [Assume i ≤ ind(G) and let c ∈ S. There exists
p ∈ core(S) ∩ I(c). Since dim(p) = ind(G) ≥ i, p ∈ Gi(c).]

If dim(c) < ind(G), then G(c) 6= ∅. [Assume dim(c) < ind(G) and let i =
dim(c). From Property (ii), we have G(c) = Gi+1 6= ∅.]

If i = dim(c), then G(c) = Gi+1(c). [Assume i = dim(c) and note that G(c) =
{c′ ∈ I(c) : dim(c′) > dim(c)} = {c′ ∈ I(c) : dim(c′) ≥ i+ 1} = Gi+1(c).]

The following was not yet defined this way in (7), and will prove to be useful.
For M ⊆ S, n = ind(G), and 0 ≤ i ≤ n, we define M+

i recursively by

M+
n = M

M+
i−1 = M+

i ∪ {c ∈ S : dim(c) = i− 1 ∧ ∅ 6= G(c) ⊆M+
i }

Finally, let M+ = M+
0 . We say M+ is the completion of M .

Definition 3 M is complete iff M = M+.

If core(M) = ∅, then M+ = M . [Suppose there exists a c ∈ M+\M . Let
i = dim(c) thus c ∈M+

i \M+
i+1 and ∅ 6= G(c) ⊆Mi+1. There exists a principal

node p ∈ I(c). Note that dim(p) > i = dim(c) and p ∈ I(c) Therefore p ∈
G(c) ⊆ Mi+1 which implies that p ∈ M+. Thus p ∈ core(M) and hence
core(M) 6= ∅.]

Lemma 4 If n = ind(G) and M ⊆ S, then

(i) For 0 ≤ i ≤ j ≤ n,M+
i ⊇M+

j .
(ii) M+

0 =
⋃n

i=0M
+
i

(iii) If 0 ≤ i < n, then c ∈M+
i \M+

i+1 ⇐⇒ dim(c) = i∧∅ 6= G(c) ⊆M+
i+1∧c 6∈

M .
(iv) If i = dim(c) ∧ c ∈M+\M , then c ∈M+

i ∧ ∅ 6= G(c) ⊆M+
i+1.

PROOF. Property (i) follows immediately from the definition. Property (ii)
follows from 0 ≤ i ≤ j ≤ n,M+

i ⊇ M+
j . Property (iii) follows immediately

from the definition.
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To prove Property (iv), let 0 ≤ i < n and assume i = dim(c) and c ∈M+
0 \M

and let k be largest such that c ∈ M+
k . Since c 6∈ M = M+

n , we have k < n
and c ∈M+

k \M+
k+1 and thus k = i ∧ ∅ 6= Gi(c) ⊆M+

i+1. 2

Theorem 5 For M ⊆ S, M+ is the smallest subset of S satisfying:

(i) M ⊆M+.
(ii) If ∅ 6= G(c) ⊆M+, then c ∈M+.

PROOF. Let n = ind(G). Property (i) follows from the fact that M = M+
n ⊆

M+
0 = M+. To prove (ii), assume ∅ 6= G(c) ⊆ M+. If c ∈ M = M+

0 , then
c ∈ M+ so assume c 6∈ M . Let i = dim(c). Thus, by Lemma 4, ∅ 6= G(c) ⊆
M+

i+1 ∧ c ∈ M+
i \M+

i+1. Hence c ∈ M+. Therefore M+ satisfies Properties (i)
and (ii).

Suppose C satisfies Properties (i) and (ii). Let c ∈ M+. If c ∈ M , then, by
Property (i), c ∈ C. Assume c ∈ M+\M . Thus, by definition and Lemma 4,
c ∈ M+

i \Mi+1 where i = dim(c). Thus c ∈ M+
i \M where i = dim(c). We

claim this is sufficient to insure c ∈ C.

Let P(i) be the statement “If dim(c) = i ∧ c ∈ M+
i \M , then c ∈ C”. Let

n = ind(G). Since M+
n = M and C satisfies Property (i), P(n) is true.

Assume P(j) is true for all j such that i ≤ j ≤ n for some i such that 0 < i ≤ n
and let dim(c) = i− 1 and c ∈M+

i−1\M . Thus ∅ 6= G(c) ⊆M+
i . Let c′ ∈ G(c)

and k = dim(c′). Thus c′ ∈ M+ and k ≥ dim(c) + 1 = i. If c′ ∈ M then
c′ ∈ C so assume c′ 6∈ M . It follows that c′ ∈ M+

k \M . Since i ≤ k ≤ n, by
assumption, P(k) is true and hence c′ ∈ C. Thus ∅ 6= G(c) ⊆ C. Since C
satisfies Property (ii), c ∈ C. Therefore M+ ⊆ C. 2

Corollary 6 M is complete iff ∅ 6= G(c) ⊆M implies c ∈M.

PROOF. If M is complete then M = M+ and, by Theorem 5, ∅ 6= G(c) ⊆M
implies c ∈ M. If ∅ 6= G(c) ⊆ M implies c ∈ M, then M = M+ and hence is
complete. 2

3 Rooted Sets

A node c ∈ M is said to be rooted in M iff c is incident to a principal node
of M , otherwise c is said to be unrooted in M . Rooted(c) is the set of rooted
nodes in M . Unrooted(c) is the set of unrooted nodes in M .

Definition 7 If M = Rooted(M), M is said to be rooted.

From this we have the following:

Rooted(M) = {c ∈M : core(M) ∩ I(c) 6= ∅}
6



Unrooted(M) = M\Rooted(M) = {c ∈M : core(M) ∩ I(c) = ∅}

If M 6= ∅ and M is rooted, then core(M) 6= ∅. [Assume M 6= ∅ and M is
rooted and let c ∈M . Since M is rooted there exists p ∈ core(M) ∩ I(c).]

The following two lemmas will be of repeated use later in this paper:

Lemma 8 Rooted(M) is rooted, and it is also complete if M is complete.

PROOF. Let R = Rooted(M). Note that core(R) = core(M). Suppose c ∈
R. Thus c ∈M and core(M) ∩ I(c) 6= ∅ and so core(R) ∩ I(c) 6= ∅. Therefore
R is rooted.

To show that R is complete, suppose there exists a c ∈ R+\R. Since R ⊆
M,R+ ⊆ M+. Since M is complete we have R+ ⊆ M+ = M and hence
c ∈ M\R. Thus core(M) ∩ I(c) = ∅. Let i = dim(c). Since c ∈ R+\R we
have G(c) ⊆ R+

i+1. Since G is an incidence pseudograph, there exists a p ∈
core(S) ∩ I(c). Since M is complete and c ∈ M we have p ∈ M . Hence
core(M) ∩ I(c) 6= ∅ which implies c ∈ R but c 6∈ R. Therefore R+ = R and
hence R is complete. 2

Lemma 9 If c ∈M+\M and p ∈ core(S) ∩ I(c), then p ∈M .

PROOF. Let c ∈ M+\M and p ∈ core(S) ∩ I(c). Let i = dim(c). Thus c ∈
M+

i \M+
i+1 and ∅ 6= G(c) ⊆ Mi+1. We have p ∈ I(c) and dim(p) > dim(c) = i

so p ∈ G(c) and therefore p ∈ Mi+1 ⊆ M+. Thus p ∈ core(M+) = core(M).
Therefore p ∈M . 2

This lemma allows the following

Corollary 10 (i) If c ∈M+\M , then core(M) ∩ I(c) 6= ∅
(ii) If M is rooted, then M+ is rooted.

PROOF. Property (i): Let c ∈M+\M . Since G is an incidence pseudograph,
∃p ∈ core(S)∩I(c). By Lemma 9 this implies p ∈M and since p is a principal
node, that p ∈ core(M). Hence core(M) ∩ I(c) 6= ∅.

Property (ii): Assume M is rooted and let c ∈M+. If c ∈M , then core(M)∩
I(c) 6= ∅. Otherwise, by Lemma 9, core(M) ∩ I(c) 6= ∅. Therefore M+ is
rooted. 2

4 Components and Regions

If M is complete and C ⊆M , then C is called a component of M iff

(1) The principal nodes of C form a non-empty maximal connected (wrt M)
subset of the principal nodes of M .
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(2) If p is a principal node of C, c ∈M, and c ∈ I(p), then c ∈ C.
(3) C is complete wrt G.

Definition 11 M ⊆ S is said to be a component iff M is a component of M .
A region (of M) is a finite component (of M).

If M is complete, rooted, and core(M) connected and if C is a component of
M , then C = M . [We have C ⊆ M . Let c ∈ M . We need to show c ∈ C.
Since core(M) is connected and core(C) is a maximal connected subset of the
core(M) and since core(M) is connected, we must have core(C) = core(M).
M is rooted so there exists a p ∈ core(M)∩ I(c). Since p ∈ core(C)∩ p ∈ I(c)
and since C is a component, we have c ∈ C.]

By using Lemma 9, we can show the following

Corollary 12 If C is a component of M , then Rooted(C) is a rooted compo-
nent of M .

PROOF. Let R = Rooted(C). Note R ⊆ C ⊆M . The set core(R) = core(C)
is a nonempty maximal connected subset of core(M) since C is a component
of M .

If c ∈M, core(R)∩I(c) 6= ∅, then core(C)∩I(c) 6= ∅ and c ∈M . Therefore c ∈
C since C is a component of M . Thus c ∈ R since c ∈ C and core(C)∩I(c) 6= ∅.

To show R is complete, assume that there exists a c ∈ R+\R. Since R+ ⊆
C+ = C, c ∈ C, and c 6∈ R we have core(C)∩ I(c) = ∅. Since G is an incidence
pseudograph, there exists a p ∈ core(S)∩I(c). By Lemma 9, p ∈ C. Therefore
p ∈ core(R) = core(C) and p ∈ I(c) which contradicts core(C) ∩ I(c) = ∅,
since c 6∈ C. Therefore R is complete.

Let c ∈ R which implies c ∈ C and core(C) ∩ I(c) 6= ∅. Therefore core(R) ∩
I(c) 6= ∅ and so R is rooted. 2

By using Lemma 9, we also show the following lemma, which will be used in
the proof of the following theorem.

Lemma 13 If M is complete and p ∈ core(M), then M has a unique rooted
component C containing p. Furthermore C = core(C) ∪ {c ∈ M : I(c) ∩
core(C) 6= ∅}.

PROOF. Let p ∈ core(M) for M complete. Let A = {c ∈ core(M) : c
and p are connected wrt M}. A is a nonempty maximal connected subset of
core(M).

Let C = A ∪ {c ∈ M : A ∩ I(c) 6= ∅}. C ⊆ M . Note that core(C) = A. Thus
core(C) is a non-empty maximal connected subset of M .
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To show C is complete suppose there exists a c ∈ C+\C. Since c 6∈ C, we have
A ∩ I(c) = ∅. There exists a principal node q ∈ I(c). By Lemma 9, q ∈ C
which implies core(M) ∩ I(c) 6= ∅. This implies that c ∈ C which contradicts
the assumption that c 6∈ C. Therefore C = C+ and hence C is complete.

Let q ∈ core(C), c ∈ M, and c ∈ I(q). Thus c ∈ M and A ∩ I(c) 6= ∅ which
implies c ∈ C. Therefore C is a component of M containing p.

To show C is rooted let c be a marginal node of C. By the definition of C we
have core(C) ∩ I(c) 6= ∅ and hence C is rooted.

To show C is unique, assume R is a rooted component of M containing p. Since
core(R) and core(C) are both maximal connected subsets of the core(M) each
containing p, we must have core(C) = core(R) = A. Let c ∈ C and hence
c ∈ M . If c ∈ A then c ∈ R so assume c 6∈ A which implies A ∩ I(c) 6= ∅ and
hence core(R) ∩ I(c) 6= ∅ which, since R is a component of M implies c ∈ R.
So C ⊆ R. Let c ∈ R which implies c ∈ M . Since R is rooted there exists a
principal node p ∈ I(c). Thus A ∩ I(c) 6= ∅ which implies c ∈ C. Therefore
C = R. 2

Theorem 14 (i) If M is complete and rooted, then the rooted components of
M form a partition of M .
(ii) If M is complete and not rooted, then the set consisting of Unrooted(M)
along with the rooted components of M is a partition of M .

PROOF. Property (i): Following the previous lemma, for each p ∈ core(M)
let Cp be the unique rooted component of M containing p. Recall that Cp =
core(Cp) ∪ {c ∈ M : core(Cp) ∩ I(c) 6= ∅}. Let A = {Cp : p ∈ core(M)}. Let
p, q ∈ core(M) and assume Cp ∩Cq 6= ∅. Let c ∈ Cp ∩Cq. Since Cp and Cq are
rooted, there exists a p′ ∈ core(Cp)∩I(c) and there exists a q′ ∈ core(Cq)∩I(c).
We have p, p′, c, q′, q is a sequence of nodes in M each connected to the next
and thus p and q are connected wrt M and thus p ∈ Cq which implies Cp = Cq

since the rooted components of M containing p are unique. Thus A consists
of disjoint subsets of M .

Let c ∈M . Since M is rooted there exists a p ∈ core(M)∩ I(c) and so c ∈ Cp

which implies c ∈ ⋃ A. Since
⋃ A ⊆M we conclude that M =

⋃ A.

Property (ii): At first we show that, if C is a component of Rooted(M), then C
is a rooted component of M . – Let R = Rooted(M) and let C be a component
of R. Note that core(R) = core(M) and thus core(C) is a maximal connected
subset of core(M).

Assume p ∈ core(C), c ∈ M , and c ∈ I(p). Since core(C) ⊆ core(R), p ∈
core(R), c ∈ M and c ∈ I(p) which implies that c is rooted in M and hence
c ∈ R. Since C is a component of R we have c ∈ C, and since C, being
a component of R is complete, we have C is a component of M . Since C ⊆
Rooted(M), we have core(M)∩I(c) 6= ∅, for all c ∈ C. Therefore C is a rooted
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component of M .

Now let K = M\Unrooted(M) = M ∩Rooted(M) = Rooted(M). By Lemma
8, K is complete and rooted. Thus, by Property (i), K is partitioned by the
rooted components of K. Let P be the collection of the rooted components of
K along with the set Unrooted(M). As shown above, we also have that the
components of K are rooted components of M . Clearly M =

⋃ P. We have
the rooted components of M are disjoint and disjoint from Unrooted(M).
Therefore P partitions M . 2

5 Definition of Topology; Closed and Open Sets

Definition 15 M ⊆ S is said to be closed iff, for all c ∈ M and for all
c′ ∈ I(c) with dim(c′) < dim(c), it follows that c′ ∈ M . M is said to be open
iff M = S\M is closed.

As usual, the family of all open sets defines a topology, here on the given

incidence pseudograph. A set M is closed iff M is open. [Because of M = M .]

A node c of a set M is called an inner node of M iff I(c) ⊆M , otherwise it is
called a border node of M .

Definition 16 M∇ is the set of inner nodes of M . δM is the set of border
nodes of M and is called the border of M .

Theorem 17 If M is closed, then both M and M∇ are complete.

PROOF. Set M : Suppose M is closed. We claim M+
i ⊆ M for 0 ≤ i ≤ n

where n = ind(G). Recall M+
n = M so the claim is true for i = n.

Assume M+
i ⊆ M for some 0 < i ≤ n and let c ∈ M+

i−1. Thus c ∈ M+
i (and

hence c ∈ M) or that dim(c) = i − 1 < n and ∅ 6= G(c) ⊆ M+
i . Assume

c′ ∈ G(c) ⊆ M+
i . Thus c′ ∈ I(c) and dim(c′) > dim(c). By assumption

M+
i ⊆ M . Hence c′ ∈ M . Since M is closed, this implies c ∈ M . Therefore

M+
i ⊆ M for all i satisfying 0 < i ≤ n. This implies M+ = M and therefore

M is complete.

Set M∇: Assume M is closed. We claim (M∇)+
i ⊆M∇ for 0 ≤ i ≤ n.

Assume (M∇)+
i ⊆ M for some 0 < i ≤ n and let c ∈ (M∇)+

i−1. Thus c ∈
(M∇)+

i (and hence c ∈ M∇) or that dim(c) = i − 1 < n and ∅ 6= G(c) ⊆
(M∇)+

i . Assume c′ ∈ G(c) ⊆ (M∇)+
i . Thus c′ ∈ I(c), dim(c′) > dim(c), and

c′ ∈ (M∇)i which, by assumption, implies c′ ∈M∇. Since c ∈ I(c′) this implies
that c ∈M .

To show c ∈ (M∇) let b ∈ I(c). If dim(b) > dim(c), then, since G(c) ⊆ M∇,
we have b ∈ M∇ and hence b ∈ M . If dim(b) = dim(c), then b = c which
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implies b ∈M . If dim(b) < dim(c), then b ∈M since M is closed. This implies
(M∇)+ = M∇ and therefore M∇ is complete. 2

We also note that M is both open and closed iff its border is the empty set
(i.e... δM = ∅ iff M = M∇). [Obviously, δM = M\M∇ and thus δM = ∅ iff
M = M∇. – Now assume that M is open and closed and let c ∈ M . To show
c ∈ M∇, let c′ ∈ I(c). If dim(c′) > dim(c), then c′ ∈ M since M is open. If
dim(c′) = dim(c), then c′ = c and hence c ∈ M . If dim(c′) < dim(c), then
c′ = c and hence c ∈ M since M is closed. Therefore M = M∇. – On the
other hand, assume that M = M∇ and suppose c ∈ M satisfies c′ ∈ I(c). It
follows that I(c) ⊆M since M = M∇ and thus c′ ∈M .]

The following examples illustrate various situations which may occur.

Fig. 2. Left: A finite, closed (and hence complete), non-empty M which has a
non-rooted component. Right: An M which is closed (and hence complete) with
M 6= core(M)+.

Figure 2 shows that there exists a finite, closed (and hence complete), non-
empty M which has a non-rooted component (left), and also (right) that
there exists an M which is closed (and hence complete) with M 6= core(M)+;
for this, let G be defined by the diagram; let M={a,c,d}. M is closed but
core(M)+ = {a, c} 6= M . Note that these pseudographs are not monotonic.

Fig. 3. Left: An M which is closed (and hence complete) and M∇ not open. Right:
An M which is closed, not open, and M∇ not closed.

Figure 3 shows on the left that there exists an M which is closed (and hence
complete) and M∇ not open; for this let S and M be defined by the diagram;
M = {b, c} = M+, M∇ = {c}, and M∇ = {a, b} which is not closed since it is
missing c. Therefore M∇ is not open. The figure shows on the right that there
exists an M which is closed, not open, and M∇ not closed. For this, let S and
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M be defined by the diagram; M∇ = {b, c, d}, b ∈M∇, dim(a) < dim(b), and
a 6∈M∇. Therefore M∇ is not closed.

Fig. 4. Left: An M which is complete, open, not closed, and M∇ is not complete.
Right: An M which is complete and δM is not complete, not closed, and not open.

Figure 4 shows on the left that there exists an M which is complete, open,
not closed, and M∇ is not complete. For this, let S and M be defined by the
diagram; M∇ = {a}. Note ∅ 6= {c′ ∈ I(b) : dim(c′) > dim(b)} = {a} ⊆ M∇,
but b 6∈ M∇. – The figure shows on the right that there exists an M which
is complete and δM is not complete, not closed, and not open. For this, let
S and M be defined by the diagram; δM = {a, b, c, d}. Note ∅ 6= {c′ ∈ I(h) :
dim(c′) > dim(h)} = {c, d} ⊆ δM . But h 6∈ δM . Therefore δM is not complete
and hence not closed. Furthermore, g ∈ δM , dim(g) > dim(a), and a 6∈ δM .
Therefore δM is not open.

Fig. 5. An M which is open but not complete.

Figure 5 shows that there exists an M which is open but not complete. For
this, let S = {a, b} and M = {a} as defined by the diagram. To show M is
open note that M = {b} which is closed since dim(b) = 0 and thus there is
no node c ∈ I(b) such that dim(c) < dim(b). To show M is not complete we
note that ∅ 6= G(b) ⊆M which implies b ∈M+ \M .

Lemma 18 M is open iff, for all c ∈M and c′ ∈ I(c) with dim(c′) > dim(c),
it follows that c′ ∈M .

PROOF. Assume M is open, c ∈ M , c′ ∈ I(c) and dim(c′) > dim(c). If
c′ ∈ M which is closed since M is open, we would have c ∈ M . Therefore
c′ ∈M .

Assume that for all c ∈M and c′ ∈ I(c) with dim(c′) > dim(c) it follows that
c′ ∈ M , and suppose c ∈ M , c′ ∈ I(c) and dim(c′) < dim(c). If c′ ∈ M this
would imply that c ∈ M . Thus c′ ∈ M . Therefore M is closed and hence M
is open. 2
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6 Descendence Paths

This section prepares for important considerations in the following section by
providing and discussing the notion of a descendence path.

A sequence of nodes {p0, . . . , pk} is called a descendence path (from p0 to pk) iff,
for all i ∈ {0, . . . , k − 1}, dim(pi+1) > dim(pi) and pi+1 ∈ I(pi). For example,
in a 3D regular grid, we may start with a grid vertex p0, continue with a grid
edge p1 which is incident with this vertex, then with a grid face p2 incident
with this edge, and finally a grid cube p3 incident with this face.

A descendence path {p0, . . . , pk} is called a descendence path wrt M (from p0

to pk) iff for 0 ≤ i < k, pi 6∈M and pk ∈ S. Note that for any node c, {c} is a
descendence path (wrt any M) from c to c.

For M ⊆ S, i ∈ N define

C(M, i) = {c ∈ S : ∃ descendence path {p0, . . . , pi} with c = p0 ∧ pi ∈M}
M• = ∪∞i=0C(M, i)

Note that M = C(M, 0), so M ⊆M•. Also note that for n = ind(G), M• =
∪n

i=0C(M, i) since C(M, i) = ∅ for i > n. We say c′ is a descendent of c iff
there exists a descendence path from c = p0 to c′ = pk. Let D(c) = {c′ :
c′ is a descendent of c} and DM(c) = {c′ : ∃ descendence path wrt M from c
to c′ }.

If c′ ∈ I(c) ∧ dim(c′) > dim(c), then D(c′) ⊆ D(c). [Let b ∈ D(c′). Thus there
exists a descendence path {p0, . . . , pk} from c′ to b. Then {c, p0, . . . , pk} is a
descendence path from c to b. Thus b ∈ D(c). Therefore D(c′) ⊆ D(c).]

We have that D(c) = {c} ∪ ⋃{D(c′) : c′ ∈ I(c) ∧ dim(c′) > dim(c)}. [Let
b ∈ D(c) and b 6= b. Thus there exists a descendence path {p0, . . . , pk} from c
to b. Note that b ∈ D(p1), p1 ∈ I(c), dim(p1) > dim(c) since c = p0. Therefore
D(c) ⊆ {c}∪⋃{D(c′) : c′ ∈ I(c)∧dim(c′) > dim(c)}. – Let b ∈ {c}∪⋃{D(c′) :
c′ ∈ I(c) ∧ dim(c′) > dim(c)}. If b = c, then b ∈ D(C) so assume b 6= c.
Then there exists c′ ∈ I(c), dim(c′) > dim(c), and b ∈ D(c′). Thus there is a
descendence path {p0, . . . , pk} from c′ to b. Define s0 = c and si = pi−1 for
1 ≤ i ≤ k+1. Then {s0, . . . , sk+1} is a descendence path from c to b and hence
b ∈ D(c).]

For 0 ≤ i ≤ ind(G), we define Di(c) = {c′ ∈ D(c) : dim(c) = i} and DM
i (c) =

{c′ ∈ DM(c) : dim(c) = i}.

If A = M ∪ {c ∈ S\M : Dn(c) ⊆ M}, n = ind(G), and if {p0, . . . , pk} is a
descendence path for which there exists a pi ∈ A\M , then pj ∈ A, for all j,
with i ≤ j ≤ k. [Assume {p0, . . . , pk} is a descendence path such that there
exists a pi ∈ A\M . Let i ≤ j ≤ k. We need to show Dn(pj) ⊆M . If j = i then
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we have pj ∈ A\M and so Dn(pj) ⊆ M . Assume i < j. Let s ∈ Dn(pj) Thus
there exists a descendence path {s0, . . . , sm} from pj to s, with dim(s) = n.
For 0 ≤ q ≤ m− i+ j, define

tq =

 pi+q 0 ≤ q ≤ j − i

sq+i−j j − i < q ≤ m− i+ j

Then {t0, . . . , tm−i+j} is a descendence path from pi to s and hence s ∈
Dn(pi) ⊆M . Therefore Dn(pj) ⊆M and thus pj ∈ A.]

If c 6∈ core(S)∧DM(c) ⊆M , then c ∈M+. [Assume c 6∈ core(S)∧DM(c) ⊆M
and suppose c 6∈ M+. Let i = dim(c). Since c 6∈ M+, c 6∈ Mi. Thus ∅ = G(c)
or G(c) 6⊆ Mi+1. Since c 6∈ core(S) we have G(c) 6= ∅. Thus there exists
c′ ∈ G(c)\Mi+1. So c′ ∈ I(c), dim(c′) ≥ i + 1 > dim(c). c′ 6∈ Mi+1 implies
c′ 6∈ M . Let p0 = c, p1 = c′, then {p0, p1} is a descendence path from c to
c′, pi 6∈ M for 0 ≤ i < 1 Therefore c′ ∈ DM(c)\M . This implies DM(c) 6⊆ M .
Therefore c ∈M+.]

Note that, if pi 6∈ M for all i satisfying 0 ≤ i ≤ k, then pk ∈ DM(c). Thus it
follows that if a node c, which is in the completion of a set M , had a descendent
b which is not in the completion of M , then every descendence path from c to b
must contain at least one member of M . We restate this fact in the following:

Corollary 19 If c ∈ M+ and {p0, . . . , pk} is a descendence path with c = p0

and pk 6∈M+, then there exists i, 0 ≤ i ≤ k, with pi ∈M .

7 Topological Closure

In this section we show that any set M ⊆ S does have a unique “topological
closure”.

Lemma 20 If D is closed and M ⊆ D, then

(i) for all i ∈ N, C(M, i) ⊆ D
(ii) M• ⊆ D

PROOF. Property (ii) follows from Property (i) since M• =
⋃∞

i=0 C(M, i).

Let n = ind(G). Note that C(M, i) = ∅, for all i > n. We prove Property (i)
by induction. Since C(M, 0) = M we have C(M, 0) ⊆ D.

Assume C(M, i) ⊆ D and let c ∈ C(M, i+1) for some 0 ≤ i < n. By definition
there exists a descendence path {p0, . . . , pi+1} with c = p0 and pi+1 ∈M . For
0 ≤ j ≤ i let sj = pj+1. We have si = pi+1 ∈ M so s0 ∈ C(M, i). By the
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assumption we have s0 ∈ D. Hence p1 ∈ D and p0 ∈ I(p1). Since D is closed,
c = p0 ∈ D. 2

Corollary 21 If D is closed, M ⊆ D, and if {p0, . . . , pk} is a descendence
path with pk ∈M , then p0 ∈ D.

Theorem 22 M• is the smallest closed set containing M .

PROOF. M = C(M, 0) ⊆ M•. To show M• is closed, let c ∈ M• and
c′ ∈ I(c) such that dim(c′) < dim(c). Then there exists a descendence path
{p0, . . . , pk} such that c = p0 and pk ∈ M . Define s0 = c′ and for 1 ≤
j ≤ k + 1, define sj = pj−1. Thus {s0, . . . , sk+1} is a descendence path with
c′ = s0 ∧ sk+1 ∈M . Hence c′ ∈M• and therefore M• is closed.

Suppose M ⊆ D and D is closed. By Lemma 20, M• ⊆ D. 2

This theorem now allows us to formulate the following important

Definition 23 Let M ⊆ S; we denote the unique (topological) closure of M
by M•.

Corollary 24 M• = (M+)•

PROOF. M+ ⊆ M• and M• is closed. It follows from Theorem 22 that
(M+)• ⊆ M•. Since M ⊆ M+, it follows that M• ⊆ (M+)•. Therefore M• =
(M+)•. 2

Corollary 25 If M is finite, then M• is finite.

PROOF. Assume M is finite. Thus C(M, 0) = M is finite. Let n = ind(G)
and assume C(M, i) is finite for 0 ≤ i < n. We show that

C(M, i+ 1) = {c ∈ S : ∃c′ ∈ C(M, i) ∩ I(c) ∧ dim(c) < dim(c′)}

Let A = {c ∈ S : ∃c′ ∈ C(M, i) ∩ I(c) with dim(c) < dim(c′)} and let
c ∈ C(M, i+ 1). By definition, there exists a descendence path {p0, . . . , pi+1}
with c = p0 and pi+1 ∈M .

Let c′ = p1. From the definition of a descendence path we have c = p0 ∈ I(c′)
and dim(c) < dim(c′). For 0 ≤ j ≤ i let sj = pj+1. Then, {s0, . . . , si} is a
descendence path with c′ = s0 and si = pi+1 ∈ M . Hence c′ ∈ C(M, i) and
thus c ∈ A.

Let c ∈ A. Then there exists a c′ ∈ C(M, i) such that c′ ∈ I(c) and dim(c) <
dim(c′). There exists a descendence path {p0, . . . , pi} such that c′ = p0 and pi ∈
M . Let s0 = c and for 1 ≤ j ≤ i+ 1, let sj = pj−1. We note that {s0, . . . , si+1}
is a descendence path from C to pi ∈M and hence c ∈ C(M, i+ 1). Therefore
C(M, i+ 1) = A.
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Note that if c ∈ C(M, i+1), then there exists a c′ ∈ C(M, i) such that c ∈ I(c′).
And thus c ∈ ⋃{I(c′) : c′ ∈ C(M, i)}. Therefore

C(M, i+ 1) ⊆
⋃
{I(c′) : c′ ∈ C(M, i)}

which is a finite union of finite sets and therefore finite. ThusM• = ∪n
i=0C(M, i)

is also finite. 2

Corollary 26 If M is finite, then M+ is finite.

PROOF. M+ ⊆M• and the previous corollary. 2

Lemma 27 If G is monotonic and M ⊆ S, then M• = M ∪ C(M, 1).

PROOF. Let A = M ∪ C(M, 1) = C(M, 0) ∪ C(M, 1). Let n = ind(G). We
will show C(M, i) ⊆ C(M, 1) for all i, 1 ≤ i ≤ n, by induction. Clearly it is
true for i = 1.

Assume C(M, i) ⊆ C(M, 1) and let c ∈ C(M, i + 1). Thus there exists a
descendence path {p0, . . . , pk} such that c = p0 and pi+1 ∈ M . For 0 ≤
j ≤ i define sj = pj+1. So p1 = s0 ∈ C(M, i). By assumption, p1 = c0 ∈
C(M, 1). Thus there exists a descendence path {t0, t1} such that p1 = t0 and
t1 ∈ M . We have c = p0 ∈ I(p1), dim(c) < dim(p1), t0 = p0 ∈ I(t1), and
dim(p1) < dim(t1). Since G is monotonic this implies c ∈ I(t1). Thus, for
r0 = c, r1 = t1, {r0, r1} is a descendence path with c = r0 and r1 ∈ M .
Therefore c ∈ C(M, 1). 2

Corollary 28 If G = [S, I, dim] is monotonic and if M is a rooted subset of
S, then M• is rooted.

PROOF. Let c be a marginal node of M•. If c ∈M , then core(M)∩I(c) 6= ∅
since M is rooted. So assume c 6∈ M . Since G is monotonic we have from
Lemma 27 that c ∈ C(M, 1). So there exists a descendence path {p0, p1}
such that c = p0 and p1 ∈ M . If p1 ∈ core(M) = core(M•), then p1 ∈
core(M•)∩ I(c). Assume p1 6∈ core(M). Thus p1 is marginal in M . Since M is
rooted there exists a p ∈ core(M)∩I(p1). We have c ∈ I(p1), dim(c) < dim(p1)
, p1 ∈ I(p) and dim(p1) < dim(p). Since G is monotonic this implies c ∈ I(p).
Thus p ∈ core(M) = core(M•). Therefore M• is rooted. 2

We also state the following three set-theoretical relations:

(i) core(M+) = core(M): Let n = ind(G) and let p ∈ core(M+). Thus
dim(p) = n which implies p ∈ M+

n = M which implies p ∈ core(M). There-
fore core(M+) ⊆ core(M). Since m ⊆ M+, we have core(M) ⊆ core(M+).
Therefore core(M+) = core(M).

(ii) core(M•) = core(M): Let n = ind(G). Since M ⊆M•, we have core(M) ⊆
core(M•). Let p ∈ core(M•). Thus there exists a descendence path {p0, . . . , pk}
such that p = p0 and pk ∈ m. Since dim(p) = n, k = 0. Thus p = pk ∈ M .
Therefore core(M•) = core(M).
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(iii) M+ ⊆ M•: M• is closed and therefore complete and contains M . Since
M+ is the smallest complete set containing M , M+ ⊆M•.

Also note that, if M is finite, core(M) is non-empty and connected wrt M ,
then M• is a closed region. [M• is finite since M is finite. M• is closed and
therefore complete. core(M•) = core(M) is a non-empty maximal connected
subset of core(M). Suppose p ∈ core(M•) ∩ I(c). If c = p then c ∈ M• so
assume c 6= p. We have p ∈ core(M•), c ∈ I(p) and dim(c) < dim(p). Since
M• is closed, c ∈ M•. Therefore M• is a component. Hence M• is a closed
component.]

If M ⊆ S, ∅ 6= core(M) is connected wrt M , then M• is a closed component
containing M . [Note that M ⊆ M• and core(M•) = core(M) is a non-empty
maximal connected subset of core(M). Since M• is closed, it is also complete.
Assume p ∈ core(M•), c ∈M•, and c ∈ I(p). If p = c, then c ∈M•, otherwise
dim(c) < dim(p). Since p ∈ M• and M• is closed, we have c ∈ M•. Thus M•

is a component. Therefore M• is a closed component containing M .]

Fig. 6. A rooted, complete, finite M\∅ 6= core(M) which is connected wrt M , but
M• is not a rooted component of M .

Figure 6 shows that there exists a rooted, complete, finite, nonempty set M 6=
core(M) which is connected wrt M , but M• is not a rooted component of M .
For this, let G be defined by the diagram and let M = {a, c}. M is rooted,
finite, and complete. Note M+ = M and M• = {a, c, e}. We have e ∈M• but
core(M•) = {a}. Thus M• is not rooted since e ∈M• and core(M•)∩I(e) = ∅.

8 Open and Closed Regions; Complete Sets

If M ⊆ S is finite then M is a closed region iff

(i) ∅ 6= core(M) is a non-empty, maximal connected subset of core(M).
(ii) For all c ∈M , c′ ∈ I(c) and dim(c′) < dim(c) it follows that c′ ∈M .

For showing this, assume at first that M is a closed region. Then Property (i)
follows from the fact that M is a component. Property (ii) follows from the
fact that M is closed. – Now assume that M satisfies Properties (i) and (ii).
From Property (ii), M is closed and hence complete. - Assume p is a principal
node of M and c ∈ I(p). If c = p, then c ∈ M . So assume s 6= p. We have
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p ∈M, c ∈ I(p), and dim(c) < dim(p). Since M is closed, this implies c ∈M .
It follows that M is a closed region.

Corollary 29 Let M be a finite subset of S where G = [S, I, dim] is an n-
incidence pseudograph. Then

(i) M is an open region of G iff
(i.1) core(M) is non-empty and connected,
(i.2) core(M) ∩ I(c) 6= ∅ ⇒ c ∈M , and
(i.3) if dim(c) < n, then c ∈M ⇔ G(c) ⊆M .

(ii) If G is monotonic then, M is an open region of G iff
(ii.1) core(M) is non-empty and connected,
(i.2) core(M) ∩ I(c) 6= ∅ ⇒ c ∈M , and
(ii.3) if dim(c) < n, then c ∈M ⇔ core(S) ∩ I(c) ⊆M .

PROOF. Assume M is an open region of G. Properties (i.1) and (i.2) follow
directly from the fact that M is a component. To prove Property (i.3), first
assume dim(c) < n and c ∈ M and b ∈ G(c). Thus b ∈ I(c) and dim(c) <
dim(b). Since M is open by Lemma 18, b ∈M . Thus G(c) ⊆M .

Next assume dim(c) < n and G(c) ⊆ M . There exists a p ∈ core(S) ∩ I(c).
Thus c ∈ I(p) and dim(c) < dim(p) which implies p ∈ G(c) ⊆ M . Hence
p ∈ M . Since M is closed this implies c ∈ M . Therefore Property (i.3) is
satisfied by M .

Assume M is a subset satisfying Properties (i.1), (i.2), and (i.3). To show M
is open assume c ∈ M , c′ ∈ I(c), and dim(c′) > dim(c). By Property (i.3),
c′ ∈M . Thus, by Lemma 18, M is open.

To show that M is complete suppose c ∈M+\M . Thus, by Lemma 6, G(c) ⊆
Mi+1 where i = dim(c). It follows, by Property (i.3), that c ∈ M . This con-
tradiction establishes M+ = M and hence M is complete. Thus we have that
M is an open region. Therefore we have shown (i).

To prove (ii) assume G is monotonic.

Assume G is open. Then, by (i), G satisfies (ii.1), (ii.2), and (i.3). Suppose
dim(c) < n. Assume c ∈ M and p ∈ core(S) ∩ I(c). Thus p ∈ G(c). By (i.3),
p ∈M. Thus core(S)∩I(c) ⊆M. Assume core(S)∩I(c) ⊆M and let b ∈ G(c).
Thus b ∈ I(c) and dim(c) < dim(b). There exists p ∈ core(S)∩ I(b). We have
c ∈ I(b), b ∈ I(p), and dim(c) < dim(b) ≤ dim(p. Since G is monotonic, we
have c ∈ I(p). Hence p ∈ core(S)∩I(c) which, by assumptions, implies p ∈M.
Thus p ∈ core(M) ∩ I(b) and thus, by (i.2), b ∈ M. Hence G(c) ⊆ M and
thus, by (i.3), c ∈M. Therefore M satisfies (ii.1), (ii.2), and (ii.3).

Assume G satisfies (ii.1), (ii.2), and (ii.3). Thus G satisfies (i.1) and (i.2).
Suppose dim(c) < n. Assume c ∈M and b ∈ G(c). There exists p ∈ core(S)∩
I(b). We have c ∈ I(b), b ∈ I(p), and dim(c) < dim(b) ≤ dim(p). Since G is
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monotonic c ∈ I(p). Hence p ∈ core(S) ∩ I(c). In follows by (iii.3), p ∈ M.
Since p ∈ core(M) ∩ I(b), we have by (ii.2), b ∈M. Therefore G(c) ⊆M.

Assume G(c) ⊆ M. Since core(S) ∩ I(c) ⊆ G(c), it follows from (ii.3), that
c ∈M. Therefore G satisfies (i.1), (i.2), and (i.3) and thus is open. 2

Fig. 7. A finite set M which is not a component.

Figure 7 shows that there exists an M which is finite, core(M) 6= ∅, connected,
open, complete, and satisfies

dim(c) < ind(G)⇒ [c ∈M ⇔ D(c) ⊆M ]

but is not a component as it fails to satisfy core(M) ∩ I(c) 6= ∅ ⇒ c ∈M .

c ∈ S is said to be invalid wrt M iff c 6∈ M ∧M ∩ I(c) 6= ∅. The following
definition provides an alternative to the definition of a border as given above:

Definition 30 The set of all nodes invalid wrt M is called the boundary of
M , denoted by bd(M).

Theorem 31 (i) If M is closed, then bd(M) = ∅.
(ii) If bd(M) = ∅, then M is complete.

PROOF. Property (i): Assume M is closed and c ∈ bd(M). Thus c 6∈M and
there exists a p ∈ core(M)∩I(c). Hence p ∈ I(c), p ∈M , and dim(c) < dim(p).
Since M is closed this implies c ∈M but c 6∈M . Therefore bd(M) = ∅.

Property (ii): Suppose M is not complete. Thus there exists a c ∈ M+\M .
Since there exists a principal node p ∈ I(c), we have by Proposition 9, p ∈
core(M)∩I(c). Since c 6∈M this implies c ∈ bd(M). But bd(M) = ∅. Therefore
M is complete. 2

Obviously, this shows that any closed set is also complete. – The following are
some technical specifications, needed in the following auxiliary considerations.

A node c is an upward rooted point of a set M iff c ∈ M and there exists a
descendence path {p0, . . . , pk} with

c = p0 ∧ pk ∈ core(M) ∧ ∀i ( 0 ≤ i ≤ k ⇒ pi ∈M)
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The set of all upward rooted points of M is denoted by URP (M).

A node c is a downward exit point of M iff c 6∈ M and there exists a c′ ∈
M ∩ I(c) with dim(c) < dim(c′). The set of all downward exit points of M is
denoted by DXP (M).

A node c is an upward exit point of M iff c 6∈M and there exists a c′ ∈M∩I(c)
with dim(c) > dim(c′). The set of all upward exit points of M is denoted by
UXP (M).

(A1) M is closed iff DXP (M) = ∅. [Assume M is closed and suppose there
exists a c ∈ DXP (M). Thus c 6∈M and there exists a c′ ∈M ∩ I(c) such that
dim(c) < dim(c′). Since M is closed this implies c ∈ M . This contradiction
establishes DXP (M) = ∅.

Assume DXP (M) = ∅ and let c ∈ M, c′ ∈ I(c) such that dim(c′) < dim(c).
Since DXP (M) = ∅, this implies c′ ∈M . Therefore M is closed.]

(A2) M is open iff UXP (M) = ∅. [Assume M is open and c ∈ UXP (M). This
implies c 6∈ M and there exists a c′ ∈ M ∩ I(c) such that dim(c′) > dim(c).
But M is open which implies c ∈M . Therefore UXP (M) = ∅.

Assume UXP (M) = ∅. Let c ∈ M ∧ c′ ∈ I(c) such that dim(c′) > dim(c).
Since UXP (M) = ∅, this implies c′ ∈M . Therefore M is open.]

(A3) M is complete iff DXP (M) ⊆ URP (M). [Assume M is complete and
let c ∈ DXP (M). Thus c 6∈ M and there exists a vertex b ∈ M ∩ I(c) such
that dim(c) < dim(b). Thus b ∈ G(c) and, since M is complete, G(c) 6= ∅,
and c 6∈ M = M+, we must have G(c) 6⊆ M . Hence there exists a vertex
c′ ∈ I(c) ∩M such that dim(c′) > dim(c). Choose p0 = c and p1 = c′.

Assume p0, . . . , pi have been chosen for some i ≥ 1 satisfying for all j, i ≤ j ≤ i,
pj ∈ I(pj−1) ∩ M and dim(pj) > dim(pj−1). If dim(pi) = ind(G), then we
stop. Otherwise, since pi ∈ M and M is complete we have pi 6∈ M+. Since
dim(pi) < ind(G), G(pi) 6= ∅. Thus we must have G(pi) 6⊆ M . Hence there
exists a pi+1 ∈ G(pi)\M . Then we have pi+1 ∈ I(pi) ∩M and dim(pi+1) >
dim(pi). This process will eventually end. We choose k to be the final i and
we end up with a descendence path {p0, . . . , pk} with p0 = c ∧ pk ∈ core(M).
Thus c ∈ URP (M).

Assume DXP (M) ⊆ URP (M). Let n = ind(G) and for 0 ≤ i ≤ n, consider
the statement that P(i) ≡ 6 ∃c ∈M+\M with dim(c) = i.

Suppose c ∈ M+\M ∧ dim(c) = n. Thus c ∈ core(M+) = core(M) ⊆ M .
Therefore P(n) is true.

Assume P(j) is true for all j such that i ≤ j ≤ n for some i for 0 < i ≤ n
and suppose c ∈ M+\M such that dim(c) = i − 1. Thus ∅ 6= G(c) ⊆ M+

i .
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Thus there exists a c′ ∈ G(c) such that c′ ∈ I(c), dim(c′) > dim(c) = i − 1,
and c′ ∈ M+

i ⊆ M+. By assumption, since i ≤ dim(c′) ≤ n, c′ 6∈ M+\M .
Since c′ ∈M+, we must have c′ ∈M . Hence c ∈ DXP (M) ⊆ URP (M). Thus
there exists a descendence path {p0, . . . , pk} such that c = p0, dim(pk) = n,
and pj 6∈ M for all j satisfying 0 ≤ j ≤ k. Since dim(c) < n, k > 0. Thus
p1 ∈ I(c), dim(p1) > dim(c), and p1 6∈ M . However, p1 ∈ G(c) ⊆ M+ which
implies p1 ∈ M+\M and i ≤ dim(p1) ≤ n. This contradiction establishes
P(i− 1). Therefore M+\M = ∅ and therefore M is complete.]

(A4) M is open and complete iff UXP (M) = ∅ and DXP (M) ⊆ URP (M)

9 Partially Open Sets

For i ∈ N and c ∈ S, we define that

Li(c) = {c′ ∈ I(c) : dim(c′) ≤ i}
L(c) = {c′ ∈ I(c) : dim(c′) < dim(c)}

From these definitions it follows that I(c) = L(c) ∪ cG(c), and, if dim(c) = i,
then L(c) = Li−1(c). [For the latter, note that L(c) = {c′ ∈ I(c) : dim(c′ <
dim(c)} = {c′ ∈ (c) : dim(c′ <= i− 1} = Li−1(c).]

Let M ⊆ S and n = ind(G). For 0 ≤ i ≤ n we define M− recursively by

M−
0 = M

M−
i+1 = M−

i ∪ {c ∈ S : dim(c) = i+ 1 ∧ ∅ 6= L(c) ⊆M−
i }

We define M− =
⋃n

i=0M
−
i .

Definition 32 M is partially open iff M = M−

If M is open, then M is partially open. [ Let n = ind(G) and suppose M
is open. We claim M−

i ⊆ M for 0 ≤ i ≤ n. – Since M−
0 = M , the claim is

true for i = 0. Assume M−
i ⊆ M for some i, 0 ≤ i < n and let c ∈ M−

i+1.
If c ∈ M we are done so assume c 6∈ M . Thus we have dim(c) = i + 1 and
∅ 6= L(c) ⊆ M−

i . Thus there exists a c′ ∈ L(c) such that c′ ∈ M−
i , c′ ∈ I(c),

and dim(c′) < dim(c). By assumption, M−
i ⊆ M and so c′ ∈ M . Since M is

open this implies c ∈M . Therefore M is partially open.]

Lemma 33 If n = ind(G) and M ⊆ S, then

(1) M−
i ⊆Mj, for 0 ≤ i ≤ j ≤ n

(2) M−
n =

⋃n
i=0M

−
i

(3) if 0 < i ≤ n then c ∈M−
i \M−

i−1 ⇔ dim(c) = i∧∅ 6= L(c) ⊆M−
i−1∧c 6∈M

(4) if dim(c) = i ∧ c ∈M−\M then i > 0 ∧ c ∈M−
i ∧ ∅ 6= L(c) ⊆M−

i−1

PROOF. Properties (1), (2), and (3) follow immediately from the definitions.
To prove Property (4) let c ∈ M−\M . Let k be the smallest natural number
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such that c ∈ M−
k . Since c 6∈ M = M−

0 , k > 0 and c ∈ M−
k \M−

k−1. Thus
i = k > 0 and ∅ 6= L(c) ⊆M−

i−1. 2

Theorem 34 For M ⊆ S, M− is the smallest subset of S satisfying:

(1) M ⊆M−

(2) if ∅ 6= L(c) ⊆M− then c ∈M−.

PROOF. Property (1) follows from M = M0 ⊆M−. To prove Property (2),
assume ∅ 6= L(c) ⊆ M−. If c ∈ M , then c ∈ M− so assume c 6∈ M . Thus, by
Lemma 33, ∅ 6= L(c) ⊆M−

i−1 and c ∈M−
i \M−

i−1. Hence c ∈M−. Therefore M
satisfies Properties (1) and (2).

Suppose A satisfies Properties (1) and (2). Let c ∈ M−. If c ∈ M , then
c ∈ A since A satisfies Property (1). Assume c 6∈ M . Thus, by Lemma 33,
c ∈M−

i \M−
i−1 and ∅ 6= L(c) ⊆M−

i−1 where i = dim(c). Hence c ∈M−\M . We
claim that this is sufficient to show c ∈ A.

Let P(i) be the statement “If c ∈ M−
i \M ∧ dim(c) = i, then c ∈ A”. Since

M−
0 = M , P(0) is true (vacuously.)

Let n = ind(G) and assume P(j) is true for all 0 ≤ j ≤ i for some i, 0 ≤
i < n. Let c ∈ M−

i+1\M such that dim(c) = i + 1. It follows from Lemma 33
that ∅ 6= L(c) ⊆ M−

i . Let c′ ∈ L(c) and k = dim(c′). Thus c′ ∈ M−
i and

k ≤ dim(c) − 1 = i. If c′ ∈ M then c′ ∈ A so assume c′ 6∈ M . It follows that
c′ ∈ M−

k \M . Since 0 ≤ k ≤ i, and the assumption P(k) is true, we have that
c′ ∈ A. Thus ∅ 6= L(c) ⊆ A. Since A satisfies Property (2), c ∈ A. Hence P(i)
is true for all 0 ≤ i ≤ n. Therefore M− ⊆ A. 2

For M ⊆ S, and i ∈ N we define

O(M, i) = {c ∈ S : ∃ descendence path {p0, . . . , pi} with c = p0 ∧ p0 ∈M}

O(M) =
∞⋃
i=0

O(M, i)

Lemma 35 If A is open and M ⊆ A, then

(i) O(M, i) ⊆ A, for all i ∈ N
(ii) O(M) ⊆ A

PROOF. Property (ii) follows from Property (i) since O(M) =
⋃∞

i=0 O(M, i).
Let n = ind(G). Note that O(M, i) = ∅, ∀i > n. We will prove Property (i)
by induction. Since O(M, 0) = M and M ⊂ A, we have O(M, 0) ⊆ A.

Assume O(M, i) ⊆ A and let c ∈ O(M, i+ 1) for some i such that 0 ≤ i < n.
By definition there exists a descendence path {p0, . . . , pi+1} with c = pi+1

and p0 ∈ M . Note {p0, . . . , pi} is a descendence path with p0 ∈ M and thus
pi ∈ O(M, i). By assumption this implies pi ∈ A. We have pi ∈ A, pi ∈ I(c),
and dim(pi) < dim(c). Since A is open this implies c ∈ A. 2

22



Corollary 36 If A is open, M ⊆ A, and if {p0, . . . , pk} is a descendence path
with p0 ∈M , then pk ∈ A

Theorem 37 If M is finite, then O(M) is finite

PROOF. Assume M is finite. Thus O(M, 0) = M is finite. Let n = ind(G)
and assume O(M, i) is finite for some i such that 0 ≤ i < n. We show that

O(M, i+ 1) = {c ∈ S : ∃c′ ∈ O(M, i) with c′ ∈ I(c) ∧ dim(c′) < dim(c)}

Let A = {c ∈ S : ∃c′ ∈ O(M, i) with c′ ∈ I(c) ∧ dim(c′) < dim(c)} and let
c ∈ O(M, i + 1). By definition there exists a descendence path {p0, . . . , pi+1}
such that p0 ∈M and c = pi+1. Let c′ = pi. Note {p0, . . . , pi} is a descendence
path with p0 ∈M∧c′ = pi. Thus c′ ∈ O(M, i), c′ ∈ I(c), and dim(c′) < dim(c).
Thus c ∈ A. Therefore O(M) ⊆ A.

Now let c ∈ A. Thus there exists a c′ ∈ O(M, i) with c′ ∈ I(c) and dim(c′) <
dim(c). Let {p0, . . . , pi} be a descendence path with p0 ∈ M ∧ c′ = pi. Let
si+1 = c and let sj = pj for 0 ≤ j ≤ i. Note that {s0, . . . , si+1} is a descendence
path with s0 ∈M and c = si+1. Hence c ∈ O(M, i+1) and therefore O(M, i+
1) = A.

Note if c ∈ O(M, i + 1), then there exists a c′ ∈ O(M, i) such that c ∈ I(c′).
Thus O(M, i + 1) ⊆ ⋃{I(c′) : c′ ∈ O(M, i)}, which is a finite union of finite
sets. 2

It follows that M− is finite if M is finite. [Note that M− ⊆ O(M).]

If G is monotonic, then O(M) = M ∪ O(M, 1). [Assume G is monotonic
and let A = M ∪ O(M, 1) and n = ind(G). We claim O(M, i) ⊆ O(M, 1)
for 1 ≤ i ≤ n. Clearly it is true for i = 1. Assume O(M, i) ⊆ O(M, 1) for
some i such that 1 ≤ i < n and let c ∈ O(M, i + 1). Thus there exists
a descendence path {p0, . . . , pi+1} such that p0 ∈ M and c = pi+1. Since
{p0, . . . , pi} is a descendence path with p0 ∈ M , we have pi ∈ O(M, i) which,
by assumption implies pi ∈ O(M, 1). Thus there exists a descendence path
{a, pi} with a ∈ M . We have a ∈ I(pi), dim(a) < dim(pi), pi ∈ I(pi+1), and
dim(pi) < dim(pi+1). Since G is monotonic, a ∈ I(pi+1) and thus {a, pi+1} is
a descendence path with a ∈ M which implies c = pi+1 ∈ O(M, 1). Therefore
M ∪O(M, 1) =

⋃n
i=0 O(M, i) = O(M).]

Theorem 38 O(M) is the smallest open set containing M .

PROOF. M = O(M, 0) ⊆ O(M). To show O(M) is open, let c ∈ O(M) and
c′ ∈ I(c) such that dim(c′) > dim(c). Thus there exists a descendence path
{p0, . . . , pk} such that p0 ∈M and c = pk. Define pk+1 = c′ then {p0, . . . , pk+1}
is a descendence path with p0 ∈M and c′ = pk+1. Thus c′ ∈ O(M). Therefore
O(M) is open.

Suppose M ⊆ A for some open set A. By Lemma 35, O(M) ⊆ A. 2
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The last theorem defines a dual to the topological closure of a set M , which
is normally not available in other topologies.

10 0-Rooted Sets

Finally we reverse the roles of principal and 0-dimensional nodes. For example,
in picture analysis it might be of interest to focus on grid vertices (corners of
grid cubes, end points of grid edges, and so forth) rather than on pixel or voxel,
identified by principal nodes. This will also support studies of “partially open”
sets (i.e., sets which are typically not studied in topological papers related to
binary picture processing).

For M ⊆ S we define leaves(M) = {c ∈ M : dim(c) = 0}. A node c ∈ M
is said to be 0-rooted in M iff I(c) ∩ leaves(M) 6= ∅. The set of all 0-rooted
nodes in M is denoted by 0-Rooted(M).

Let 0-Unrooted(M) = M \ 0-Rooted(M). If M = 0-Rooted(M), then we say
M is 0-rooted.

Definition 39 If S is 0-rooted, then we also say that G is 0-rooted.

Corollary 40 leaves(M−) = leaves(M)

PROOF. Let c ∈ leaves(M−). Thus dim(c) = 0 ∧ c ∈ M−. Suppose c 6∈ M .
Then, by Lemma 33, dim(c) > 0. Thus c ∈ M which implies c ∈ leaves(M).
Therefore leaves(M−) ⊆ leaves(M).

Let c ∈ leaves(M). Thus c ∈M∧dim(c) = 0 which implies c ∈M−∧dim(c) =
0. Thus c ∈ leaves(M−). Therefore leaves(M−) = leaves(M). 2

leaves(O(M)) = leaves(M): Since m ⊆ O(M) it follows that leaves(M) ⊆
leaves(O(M)). Let c ∈ leaves(O(M)). Thus c ∈ O(M) and dim(c) = 0.
This implies there exists a descendence path {p0, . . . , pk} such that p0 ∈ M
and c = pk. Note that if k > 0, pk−1 ∈ I(c) and dim(pk−1) < dim(c). But
dim(c) = 0 and thus k = 0 and c = p0 ∈ M . Hence c ∈ leaves(M). Therefore
leaves(O(M)) = leaves(M).

M− ⊆ O(M): O(M) contains M and is open and therefore partially open.
Since M− is the smallest partially open set containing M , M− ⊆ O(M).

Lemma 41 If c ∈M−\M and b ∈ leaves(S) ∩ I(c), then b ∈M .

PROOF. Let c ∈M−\M and b ∈ leaves(S)∩ I(c). Let i = dim(c). Thus, by
Lemma 33, i > 0 ∧ c ∈ M−

i \M and ∅ 6= L(c) ⊆ M−
i−1. We have b ∈ I(c) and

dim(b) < dim(c). Thus b ∈ L(c) and hence b ∈ M−
i−1. This implies b ∈ M−.

Since dim(b) = 0, b ∈ leaves(M−) = leaves(M). Therefore b ∈M . 2
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If G is 0-rooted and c ∈M−\M , then leaves(M)∩ I(c) 6= ∅. [Let c ∈M−\M .
Since G is 0-rooted, there exists a b ∈ leaves(S) ∩ I(c). By theorem 41, this
implies b ∈M and therefore leaves(M) ∩ I(c) 6= ∅.]

If M is 0-rooted, then M− is 0-rooted. [Assume M is 0-rooted and let c ∈M−.
If c ∈ M , then leaves(M) ∩ I(c) 6= ∅. Since leaves(M) = leaves(M−), this
implies leaves(M−) ∩ I(c) 6= ∅.]

If M 6= ∅ and M is 0-rooted, then leaves(M) 6= ∅. [Since M 6= ∅ there exists a
c ∈M . Since M is 0-rooted, leaves(M)∩ I(c) 6= ∅. Therefore leaves(M) 6= ∅.]

Theorem 42 If G is 0-rooted and M is partially open, then 0-Rooted(M) is
partially open and 0-rooted.

PROOF. Let A = 0-Rooted(M). Note that leaves(A) = leaves(M). Suppose
c ∈ A. Thus c ∈ M and leaves(M) ∩ I(c) 6= ∅ and so leaves(A) ∩ I(c) 6= ∅.
Therefore A is 0-rooted.

To show that A is partially open, suppose there exists a c ∈ A−\A. Since
A ⊆ M , we have A− ⊆ M−. Since M is partially open this implies A− ⊆ M
and hence c ∈ M\A which implies leaves(M) ∩ I(c) = ∅. Let i = dim(c).
Since G is 0-rooted, there exists a b ∈ leaves(S) ∩ I(c) and since c ∈ A−\A,
we have, by Proposition 41, b ∈ A and hence leaves(A)∩ I(c) 6= ∅. But, since
leaves(A) = leaves(B), this implies leaves(M)∩ I(c) 6= ∅. This contradiction
established that A is partially open. 2

11 0-Components and 0-Regions

C ⊆M is a 0-component of M iff

(1) leaves(A) form a non-empty maximal connected (wrtM) subset of leaves(M),
(2) if b ∈ leaves(C) ∧ c ∈M ∧ c ∈ I(b), then c ∈ C, and
(3) C is partially open.

A finite 0-component of M is called a 0-region of M .

Definition 43 If M is a 0-component of M , then we call M a 0-region.

Let M be partially open, 0-rooted, and leaves(M) is connected. If C is a 0-
component of M , then C = M . [Since C is a 0-component of M , C ⊆ M .
Since leaves(M) is connected and leaves(C) is a maximal connected subset
of leaves(M), we must have leaves(C) = leaves(M). Let c ∈ M . Since M is
0-rooted, I(c) ∩ leaves(M) 6= ∅ and thus I(c) ∩ leaves(C) 6= ∅. Since C is a
0-component of M this implies c ∈ C. Therefore M = C.]

Lemma 44 If G is 0-rooted and C is a 0-component of M , then 0-Rooted(C)
is a 0-rooted component of M .
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PROOF. Let R =0-Rooted(C). Note that leaves(R) = leaves(C) is a non-
empty maximal connected subset of leaves(M) since C is a 0-component of
M . Clearly R is 0-rooted.

Let c ∈M such that leaves(R)∩I(c) 6= ∅. Thus c ∈M and leaves(C)∩I(c) 6=
∅. Since C is a 0-component this implies c ∈ C. Since leaves(C)∩ I(c) 6= ∅ we
have c ∈ R.

To show R is 0-complete assume there exists a c ∈ R−\R. Since G is 0-rooted
there exists a b ∈ leaves(S) ∩ I(c). Thus, by Proposition 41, b ∈ R and thus
leaves(R) ∩ I(c) 6= ∅. Since leaves(R) = leaves(C), leaves(C) ∩ I(c) 6= ∅.
Since R ⊆ C,R− ⊆ C− = C, c ∈ C, and c 6∈ R, we have leaves(C) ∩ I(c) 6= ∅.
This contradiction establishes that R is 0-complete. Therefore R is a 0-rooted
0-component of M . 2

Lemma 45 If G is 0-rooted, M is partially open, and b ∈ leaves(M), then
M has a unique 0-rooted 0-component C containing b. Furthermore C =
leaves(C) ∪ {c ∈M : leaves(C) ∩ I(c) 6= ∅}

PROOF. Let b ∈ leaves(M) for M partially open. Let A = {c ∈ leaves(M) :
c and b are connected wrtM}. Note A is a non-empty maximal connected
subset of leaves(M). Let C = A ∪ {c ∈ M : A ∩ I(c) 6= ∅}. Note C ⊆ M and
leaves(C) = A. Thus leaves(C) is a non-empty maximal connected subset of
leaves(M).

To show C is 0-complete suppose there exists a c ∈ C−\C which implies
A∩ I(c) = ∅. Since G is 0-rooted there exists a p ∈ leaves(S)∩ I(c) which, by
theorem 41,implies p ∈ leaves(C) ∩ I(c). This contradiction establishes that
C is 0-complete.

Let p ∈ leaves(C) and c ∈ M such that and c ∈ I(p). Thus c ∈ M and
A∩I(c) 6= ∅ which implies c ∈ C. Therefore C is a 0-component of M . Clearly
C is 0-rooted. Therefore C is a 0-rooted 0-component of M containing b.

To show that C is unique, assume R is a 0-rooted 0-component ofM containing
B. Since both C and R are 0-rooted and contain b, there exists a c ∈ leaves(C)
and an r ∈ leaves(R) such that c ∈ I(b) and r ∈ I(c). Thus leaves(R) and
leaves(C) are connected in M by b and since leaves(R) and leaves(C) are
both maximal connected subsets of leaves(M), we must have leaves(R) =
leaves(C) = A.

Let c ∈ C and hence c ∈ M . If c ∈ A, then c ∈ R so assume c 6∈ A which
implies A∩I(c) 6= ∅ and hence leaves(R)∩I(c) 6= ∅. Since R is a 0-component
of M this implies c ∈ R. Thus C ⊆ R.

Let c ∈ R which implies c ∈ M . Since R is 0-rooted there exists a p ∈
leaves(R)∩I(c). Thus c ∈M and A∩I(c) 6= ∅ which implies c ∈ C. Therefore
C = R. 2
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Lemma 46 If G is 0-rooted and M is partially open and 0-rooted, then the
0-rooted 0-components of M partition M

PROOF. For each b ∈ leaves(M), let Cb be the unique 0-rooted 0-component
of M containing b. Recall Cb = leaves(Cb) ∪ {c ∈ M : leaves(Cp) ∩ I(c) 6=
∅}. Let P = {Cb : b ∈ leaves(M)}. Suppose a, b ∈ leaves(M) such that
Ca ∩ Cb 6= ∅. Let c ∈ Ca ∩ Cb. Since Ca and Cb are 0-rooted there exists an
a′ ∈ leaves(Ca)∩I(c) and there exists a vertex b′ ∈ leaves(Cb)∩I(c). We have
that [a, a′, c, b′, b] is a sequence of nodes in M each connected to the next and
thus a and b are connected wrt M and hence a ∈ Cb which implies Ca = Cb.

Let c ∈ M . Since M is 0-rooted, there exists b ∈ leaves(M) ∩ I(c). Thus
c ∈ Cb which implies c ∈ ⋃ P. Since

⋃ P ⊆ M we have M =
⋃ P. Therefore P

partitions M . 2

Lemma 47 If C is a 0-component of 0-Rooted(M), then C is a 0-rooted 0-
component of M .

PROOF. Let K = 0-Rooted(M) and let C be a 0-component of K. Note
that leaves(K) = leaves(M) and thus leaves(C) is a non-empty maximal
connected subset of leaves(M).

Assume p ∈ leaves(K), c ∈ K, and c ∈ I(p). Thus leaves(M) ∩ I(c) 6= ∅
and hence c ∈ K. Since C is a 0-component of K we have c ∈ C. Since C is
partially open, C is a 0-component of M . Since C ⊆ 0-Rooted(M), we have
leaves(M) ∩ I(c) 6= ∅, for all c ∈ C. Therefore C is a 0-rooted 0-component
of M . 2

Corollary 48 If G is 0-rooted and M is partially open and not 0-rooted, then
the set consisting of 0−Unrooted(M) along with the 0-rooted 0-components
of M forms a partition of M .

PROOF. Let K = M \ 0-Unrooted(M) = Rooted(M). By Lemma 44, K is
0-complete and 0-rooted. Let P be the collection of the 0-rooted 0-components
of K along with Unrooted(M). By Lemma 47, the 0-rooted 0-components of
K are 0-rooted 0-components of M . By Lemma 46, K is the union of the 0-
rooted 0-components of K (and hence of M .) Since M = 0-Unrooted(M)∪K,
we have M =

⋃ P. Since the 0-rooted 0-components of M are disjoint and
distinct from each other and from 0-Unrooted(M), P partitions M . 2

We demonstrate the existence of some particular kinds of set by means of
examples. There exists a finite M which is complete with M not partially
open. For this, see M = {1, c} = M+ and M 6= M

−
= {a, b, c, d} on the left

in Figure 8.

There exists a finite M which is partially open with M not complete; see right
of Figure 8: M = {b, c} = M−, and M = {a, d, e} 6= M

−
= {a, b, c, d, e}.
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Fig. 8. Left: a finite set M which is complete, and M is not partially open. Right:
a finite M which is partially open with M not complete.

There exists a finite M which is open (and hence partially open) with M 6=
leaves(M)−. See M = {a, b, d} = M− and leaves(M)− = {d} 6= M in Fig-
ure 9, left.

Fig. 9. Left: a finite set M which is open, with M 6= leaves(M)−. Right: a finite set
M which is closed, partially open, and for which M∇ is not partially open.

If M is open, then M∇ is partially open. [Assume M is open and ∅ 6= L(c) ⊆
M∇. To show c ∈ M∇, let b ∈ I(c). Note that there exists a c′ ∈ L(c) with
c′ ∈ I(c) and dim(c′). By assumption c′ ∈M∇. Thus I(c′) ⊆M . Since c′ ∈ I(c)
implies c ∈ I(c′), we have c ∈ M . – If dim(b) > dim(c), then b ∈ M since
M is open. If dim(b) = dim(c), then b = c ∈ M . If dim(b) < dim(c), then
b ∈ L(c) ⊆ M∇ ⊆ M . In all cases we have that b ∈ M . Hence c ∈ M∇ and
therefore M∇ is partially open.]

There exists a closed, partially open M for which M∇ is not partially open.
Figure 9 shows such a set on the right, with M = {a, b, c}, M∇ = {c} and
L(a) = M∇ but a 6∈M∇. Therefore M∇ is not partially open.

If M 6= ∅ and M∇ = ∅ (i.e., δM = M), then M is not open or M is not closed.
[Since M 6= ∅, there exists a c ∈M . Since c 6∈M∇, there exists a c′ ∈ I(c)\M .
If dim(c′) > dim(c), then M is not open. We cannot have dim(c′) = dim(c)
which would imply c′ = c since c ∈ M and c′ 6∈ M . If dim(c′) < dim(c), then
M is not closed.]

There exists an M which is partially open and closed (and therefore complete)
with M∇ = ∅. See Figure 10, left.

There exists an M which is complete and open (and therefore partially open)
with M∇ = ∅. See Figure 10, middle.
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Fig. 10. Left: set M which is partially open and closed with M∇ = ∅ . Middle: set
M which is complete and open with M∇ = ∅. Right: set M which is partially open
and complete, core(M) 6= ∅, leaves(M) 6= ∅, rooted and 0-rooted, with M∇ = ∅.

There exists an M which is partially open and complete, core(M) 6= ∅,
leaves(M) 6= ∅, rooted and 0-rooted, with M∇ = ∅. See Figure 10, right.

A node c is a downward 0-rooted point of M iff c ∈ M and there exists a
descendence path {p0, . . . , pk} such that

p0 ∈ leaves(M) ∧ c = pk ∧ ∀i ( 0 ≤ i ≤ k → pi ∈M )

The set of all downward 0-rooted points of M is denoted by DRP (M).

Theorem 49 If G is 0-rooted, then M is partially open iff UXP (M) ⊆
DRP (M).

PROOF. Assume G is 0-rooted.

Assume M is partially open and let c ∈ UXP (M). Thus c 6∈ M and there
exists a b ∈ M such that dim(b) < dim(c). Hence L(c) 6= ∅ and, since M is
partially open, L(c) 6= ∅, and c 6∈ M = M−, we must have L(c) 6= M . Thus
there exists c′ ∈ I(c) ∩ M such that dim(c′) < dim(c). Chose p0 = c and
p1 = c′.

Assume p0, . . . , pi have been chosen for some i ≥ 1, such that for all j such
that 1 ≤ j ≤ i, pj ∈ I(pj−1) and dim(pj) < dim(pj−1). If dim(pi) = 0 we
set k = i and stop. Otherwise, since G is 0-rooted and dim(pi) > 0, we
have L(pi) 6= ∅. Since pi ∈ M, L(pi) 6= ∅,and M is partially open, we have
pi 6∈M−. Hence there exists a pi+1 ∈ L(pi)\M . Thus we have pi+1 ∈ I(pi)∩M
and dim(pi+1) < dim(pi). This process will eventually end.

Define sj = pk−j, for each j such that 0 ≤ j ≤ k. Then {s0, . . . , pk} is a
descendence path with s0 ∈ leaves(M) and sk = c. Thus c ∈ DRP (M) and
therefore UXP (M) ⊆ DRP (M).

Assume UXP (M) ⊆ DRP (M). Let n = ind(G) and for 0 ≤ i ≤ n consider
the statement

P(i) ≡ 6 ∃c ∈M\M with dim(c) = i
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Suppose c ∈ M−\M and dim(c) = 0. Thus c ∈ leaves(M−) = leaves(M) ⊆
M. Therefore P(0) is true.

Assume P(j) is true for all j such that 0 ≤ j ≤ i for some i with 0 ≤ i < n
and suppose c ∈ M−\M with dim(c) = i + 1. Thus ∅ 6= L(c) ⊆ M−. Hence
there exists a c′ ∈ L(c) such that c′ ∈ I(c), dim(c′) < dim(c) = i + 1, and
c′ ∈ M−

i ⊆ M−. By assumption, since dim(c′) ≤ i, c′ 6∈ M−\M . Since
c′) ∈ M−, we must have c′ ∈ M . Hence c ∈ DXP (M) ⊆ URP (M). Thus
there exists a descendence path {p0, . . . , pk} such that p0 ∈ leaves(M), pk = c,
and pj ∈ M , for all j satisfying 0 ≤ j ≤ k. Since dim(c′) < dim(c), dim(c) >
0 and so k > 0. Thus pk−1 ∈ I(c), dim(pk−1) < dim(c), and pk−1 6∈ M .
However, pk−1 ∈ L(c) ⊆M−, which implies pk−1 ∈M−\M and dim(pk−1) = i.
Thus, by assumption P(dim(pk−1)) is true which implies pk−1 6∈M−\M . This
contradiction establishes that P(i + 1) is true and therefore M−\M = ∅.
Therefore M is partially open. 2

Corollary 50 A set M is closed and partially open iff DXP (M) = ∅ and
UXP (M) ⊆ DRP (M).

12 Concluding Remarks

This paper provided a comprehensive discussion of a topology on incidence
pseudographs, as introduced by Klaus Voss in 1993, and further discussed by
others in more recent years. (The references below only give a very limited
account of such work; for an extensive bibliography see, for example, (7).)
The paper also discussed (for the first time) especially partially open sets, as
occurring in common (non-binary) digital picture analysis.
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