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Abstract. This paper proposes a way to approximate ground truth for
real-world stereo sequences, and applies this for evaluating the perfor-
mance of different variants of dynamic programming stereo analysis. This
illustrates a way of performance evaluation, also allowing to derive se-
quence analysis diagrams. Obtained results differ from those obtained for
the discussed algorithms on smaller, or engineered test data. This also
shows the value of real-world testing.
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1 Introduction

Vision-based driver assistance is one of the largest challenges in current applied
computer vision. Algorithms have to process real-world stereo sequences (e.g.,
under all possible weather conditions) in real time. Car crash tests are performed
based on very strict international standards; the same is expected soon for tests
of vision-based driver assistance modules. This paper deals with real-world stereo
sequences.

There are not yet many reference sequences available for comparative per-
formance evaluation. We refer in this paper to Set 1 (provided by Daimler AG)
of the .enpeda.. sequences,! as described in [4]. These seven stereo sequences are
taken with two Bosch (12-bit, gray-value) night vision cameras. Each sequence
contains 250 or 300 frames (640x481), and features different driving environ-
ments, including highway, urban road and rural area. Camera calibration is used
for geometric rectification, such that image pairs are characterized by standard
epipolar geometry as specified in [3].

Intrinsic camera parameters and extrinsic calibration parameters for left and
right camera (also in relation to the car) are provided. The vehicle’s movement
status is also given for each frame. We discuss a way to approximate partial
ground truth from these sequences.

! http://www.mi.auckland.ac.nz/EISATS
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2 Methodology

To evaluate the performance of a stereo algorithm, and understand how its pa-
rameters affect results, we need a quantitative way to measure the quality of
calculated stereo correspondences or motion vectors.

Approximated ground truth. We assume a planar road surface for a
selected sequence of stereo frames. These can be short sequences of just (say)
20 stereo frames. Here we illustrate for sequences of the given length of 220 to
300 frames. — We consider the test sequences to be ego-motion compensated [2],
which means that the horizon is always parallel with the row direction in the
images. We conclude that pixels on the same image row have the same depth
value if a projection of the planar road surface.
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Fig. 1. Projection of a point P of the road surface.

A side-view of the camera setting is shown in Figure 1, where 6 is the known
tilt angle, P is a road surface point which is projected into p = (zp,y,) on the
image plane, H is the height of the camera. It follows that

Z =de(OP,) = d.(OP)cost) = cos (1)

H
sin(0 + )
According to standard stereo projection equations [3], the disparity d can be

written as
_bf_ b f
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where angle ¢ can be calculated as follows, using focal length f and pixel coor-

dinate y, in the image:
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Here, yo is the y-coordinate of the principal point, and s, is the pixel size in
y-direction. We can also compute the y-coordinate of a line that projects to
infinity
Yo — f-tanf
Yinf = —
Sy
This is the upper limit of the road surface, and points on it should have zero
disparity (if no objects block the view).
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Fig. 2. Generation of a disparity mask: input image, manually generated mask, depth
map of a planar road, and resulting disparity mask.

Figure 2 illustrates the process of generating an approximated disparity map
on road surface areas, also using manual input for a conservative outline of the
road area in a given image. In the given camera setting (of the seven sequences),
there is a yaw angle (0.01 radian) which makes the cameras looking a little bit
to the left. This angle can be ignored because it only defines the right camera
to be about 3 mm behind the left camera.

See Figure 2 and assume a given pair of corresponding points, with disparity
d. By Equation (2) we have that the tilt angle can be written as follows:

Hcosvy -d
b-f

where ¢ is as given in Equation (3). Table 1 shows the estimated tilts for the
seven sequences.

) = (4)

0 = arcsin (

Table 1. Results of tilt angle estimation for the given seven sequences.

Sequence name Tilt angle (radian)
1: Construction-Site 0.016
2: Save-Turn 0.013
3: Squirrel 0.021
4: Dancing-Light 0.061
5: Intern-on-Bike 0.062
6: Traffic-Light 0.069
7: Crazy-Turn 0.060
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Error metrics. The general approach of stereo evaluation is to compute
error statistics based on given ground truth. (Note that any ground truth comes
with some measurement error; ground truth is not truth.) We use the same
error measurements as on the Middlebury stereo website [6], namely the root
mean squared error between the disparity map d(z,y) and the ground truth
map dr(z,y), defined as follows:

B = (3 ldla,y) — dr(e,) ) Q

where n is the total number of pixels, and the percentage of bad matching pizels,
defined as follows:

By = = Y (d(w,9) — drwp)] > 6a) (6

where d,4 is the threshold of disparity tolerance.

Tested approaches. We evaluate dynamic programming stereo, using vari-
ations of sources as available on [5]. We run a standard stereo dynamic program-
ming (DP) approach (e.g., see [3]) on the given seven sequences; see Table 2 for
evaluation results. Sequence 1 returns smallest RMS errors and bad matching
percentages. In contrast, Sequence 6 returns the largest error values out of the
seven sequences.

DP is then also modified by using some spatial propagation of disparities
(from previous row to the current row, with a weight of 20%) or some temporal
propagation of disparities (from the same row in the previous pair of frames,
again with a weight of 20%). Furthermore, we run Birchfield-Tomasi (BT, de-
signed to be an improvement of standard stereo DP).

3 Results and Discussion

The experiment on Sequence 7 is only performed on the first 220 frames, instead
of the total number of 250, because the road surface is reduced to a very small
area after the ego-vehicle makes a large turn to the left.

Table 2. Mean RMS error values (5) and mean bad matching percentages (6) for the
standard DP algorithm.

Sequence name Number of frames RMS Bad matches
1: Construction-Site 300 0.020 2.7%
2: Save-Turn 300 0.023 8.5%
3: Squirrel 300 0.023 23.1%
4: Dancing-Light 250 0.068 21.4%
5: Intern-on-Bike 250 0.064 17.5%
6: Traffic-Light 250 0.072 44.8%
7: Crazy-Turn 220 0.056 35.8%
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Table 3. Mean RMS error values (5) and mean bad matching percentages (6) for DP
with temporal propagation.

Sequence name Number of frames RMS Bad matches
1: Construction-Site 300 0.020 1.9%
2: Save-Turn 300 0.018 3.3%
3: Squirrel 300 0.022 17.8%
4: Dancing-Light 250 0.068 19.2%
5: Intern-on-Bike 250 0.064 16.4%
6: Traffic-Light 250 0.072 45.3%
7: Crazy-Turn 220 0.054 32.9%

The DP algorithm with spatial propagation (DPs) takes 20% of the disparity
value from the previous scanline into the final result. In other words, we apply

! (1 — Al)dy,t + Aldyfl,t where M\ =0.2

Yt

Table 3 illustrates the DP algorithm with temporal propagation (DPt), which
uses
;,t = (1 — AQ)dy7t + AQdyyt_l where My = 0.2

DP with temporal and spatial propagation (DPts) uses

' (1 =X = Xo)dy e + Aidy—1,t + Aady 11

it

where A\ = 0.1 and Ay = 0.1.

Figure 3 shows a comparison between DP and its variants, for all the frames
of Sequence 1. Result show that spatial propagation causes more errors than the
standard DP algorithm. Of course, the road surface is represented as a slanted
plane whose disparity map changes smoothly from 0 (at infinity) to about 50.
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Fig. 3. Comparing RMS error (5) results between DP and its variants.
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Fig. 4. Percentages of bad matches (6) for DP and its variants.

This particular geometry violates the assumption of spatial propagation. (Spatial
propagation might be still of interest within object regions.)

Time propagation shows (for all seven sequences) an obvious improvement
by keeping the RMS error about at the local minimum of the standard DP. Of
course, driving on a plane means that disparity values should remain constant,
and any deviation from this may be used to detect a change, such as a ‘bumpy’
road. DPts, the combined propagation method, shows a similar outcome as DP
without any propagation.

A comparison with respect to the second quality metric (percentage of bad
matches) is shown in Figure 4. Again, temporal propagation does have a positive
effect, and spatial propagation is worsening results. (Note that this evaluation
is only restricted to the road surface area.)

Now we discuss the Birchfield-Tomasi algorithm (BT). Table 4 shows evalu-
ation results of the BT algorithm (with an occlusion penalty of 25 and a reward
parameter of 5). Compared with DP techniques, the disparity maps and the qual-

Table 4. Mean RMS error values (5) and mean bad matching percentages (6) for the
BT algorithm.

Sequence name Number of frames RMS Bad matches
1: Construction-Site 300 0.09 61%
2: Save-Turn 300 0.11 97%
3: Squirrel 300 0.11 81%
4: Dancing-Light 250 0.13 99%
5: Intern-on-Bike 250 0.12 95%
6: Traffic-Light 250 0.14 100%
7: Crazy-Turn 220 0.11 99%
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Fig. 5. The performance of the BT algorithm depends on depth discontinuities. Up-
per left: left image of a stereo input pair. Upper right: road mask. Lower left: depth
discontinuity image. Lower right: calculated disparity map.

ity metrics indicate bad results for BT; disparity values are typically incorrect
on the road surface.

This bad performance may be due to the following two reasons. First, the BT
algorithm is developed on the concept of the existence of depth discontinuities.

Fig. 6. Upper row: a stereo input pair of the Tsukuba sequence. Lower left: depth
discontinuity image. Lower right: calculated disparity map using BT.
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However, depth discontinuities may not exist in many real world situations, such
as on the road. For example, Figure 5 shows that there is no edge detected close
to the car.

Second, the BT algorithm uses a disparity propagation method to fill in
untextured areas, both in horizontal and vertical directions. However, within
the road surface area, the true disparities only change very smoothly in vertical
direction.

We also run the BT algorithm (as implemented) on Middlebury stereo data,
see Figure 6 for the Tsukuba test sequences. The same problem, as widely visible
in the road scenes, occurs in the untextured area in the upper right corner.
Except of this minor image region, BT appears here to be of advantage in general.

4 Conclusions

The difficulty for the evaluation of stereo techniques on real-world sequences is
the lack of ground truth. This problem is partially solved by approximating the
3D geometry of the road.

The paper illustrated the use of these on-road estimates for evaluating the
performance of variants of dynamic programming stereo on real-world sequences.

Further approximate ground truth (such as estimated poses of simple objects,
such as rectangular faces in the scene) might be accumulated, to go, step by
step, towards a 3D modeling of the actually recorded real scene. Of course, some
objects or features are not of interest with respect to applications such as driver
assistance or traffic monitoring.

The order of the algorithms’ performance is clearly inconsistent to that re-
ported on the Middlebury stereo or optical flow website. This difference shows
the necessity for establishing performance evaluation methods on (various) real-
world sequences (‘Computer Vision beyond Middlebury’ - without neglecting the
very positive influence these engineered test examples had and have; but it is
certainly critical if overdoing one particular way of evaluation).
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