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Abstract

Detecting moving objects is a very important aspect of driver assistance systems (DAS). This paper
handles this issue by using a vision based system mounted within the vehicle. The pipeline for both a
stereoscopic and monocular approach are covered. Both approaches use image sequences and compare
moving feature points over time. This sparse information is then segmented using the optimal graph-cut
algorithm, by also incorporating the grey-scale images. This paper then evaluates and contrasts the two
approaches to identify the accuracy and robustness of each approach. The two methods both work in
real-time on normal PC hardware (Quad Core CPU).
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1 Motion Detection and DAS

Motion is one of the major cues for human per-
ception. Detecting moving objects is also a major
issue for driver assistance systems (DAS) and road
safety. The authors consider the detection of mo-
ving traffic participants to be an important step
toward attention-based environment perception.

This paper investigates methods and limitations of
both monocular and binocular camera systems for
motion detectability. It is evident that a monocu-
lar system is cheaper, uses less installation space,
and suffers less decalibration issues, compared to
a stereo system. However, a stereo system yields
direct range measurement estimates (e.g. [5]), but
the orientation between the two cameras needs to
be known accurately, and decalibration can cause
major issues. This paper provides insight into the
difference between monocular and stereo camera
performance.

The motion of the ego-vehicle greatly complicates
the problem of motion detection because simple
background subtraction of successive images yields
no result. The key idea behind our approach of de-
tecting independently moving objects is to distin-
guish between motion in the images caused by the
ego-motion of the ego-vehicle (static objects) and
motion caused by dynamic objects in the scene.
This paper presents and investigates techniques to
distinguish between stationary and non-stationary
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points. They are based on tracking feature points
in sequential images.

Section 2 presents our algorithm, starting with an
investigation of motion analysis techniques, and
followed by presenting segmentation of the moving
objects from the static scene. In Section 3, dif-
ferent scenarios are presented and analysed, confir-
ming the practicality of computer vision for the
sensation and perception of motion. Differences
between monocular and binocular motion detec-
tion are discussed and segmentation results for mo-
ving objects are presented. The concluding section
is on future work and obtained insights.

2 Our Algorithm

The proposed algorithm is able to find both rigid
objects such as cars and non-rigid objects such as
moving pedestrians, and it is subdivided into two
main steps:

Step 1. As a first result, feature points on inde-
pendently moving objects are detected as moving.
These features, however, are sparse and do not
characterize the whole image.

Step 2. In a second step, moving objects are seg-
mented in the images using these sparse features
as seeds for segmentation. We make use of the glo-
bally optimal graph-cut segmentation algorithm [2]
to reject outliers and to find image regions with an
accumulation of image features lying on moving
objects.



2.1 Tracking of Image Features

The detection of moving objects is based on a mo-
tion analysis of individual tracked image features.
The tracking is done employing the optical flow
method KLT, developed by [10]. The tracked fea-
tures are then reconstructed into 3D coordinates.
The stereoscopic approach accomplishes this using
a pair of stereo images by estimating the dispa-
rity and using triangulation (e.g. [4]), where as
the monocular approach accomplishes this using
sequential images and evaluating the optical flow.
The monocular approach additionally requires the
knowledge about the ego-motion of the camera which
can be obtained either by an inertial measurement
unit (IMU) or by the optical flow itself [1].

Both approaches, monocular and stereoscopic, pro-
vide a motion metric which is correlated to the
likelihood that the point is moving. This motion
metric serves as input for the segmentation. The
sequence of operations is summarized in Figure 1.

Figure 1: Sequence of operations. Both approaches,

monocular and stereoscopic, have the computation of

the optical flow and the segmentation in common. The

greatest difference is the way in which the motion is

detected.

2.1.1 Monocular Motion

A monocular vision system can not reconstruct the
3D position of a scene point in one time frame. It
relies on structure from motion, to gather 3D data
over time. Points that do not fulfill the constraints
of a static 3D point are classified as moving. These
constraints are as follows:

Epipolar Constraint: The epipolar constraint
expresses that the viewing rays of a static 3D point
(the lines joining the projection centres and the 3D
point) must meet. A moving 3D point in general
induces skew viewing rays violating the constraint.

Positive Depth Constraint: The fact that all
points seen by the camera must lie in front of it
is known as the positive depth constraint. It is
also called cheirality constraint. If viewing rays
intersect behind the camera the actual 3D point
must be moving.

Positive Height Constraint: All 3D points must
lie above the road plane. If viewing rays intersect
underneath the road the actual 3D point must be
moving. This constraint requires the knowledge
about the normal vector of the road plane and the
camera distance to the road plane. These entities
are estimated exploiting the optical flow on the
road [7].

Trifocal Constraint: A triangulated 3D point
utilizing the first two views must triangulate to
the same 3D point when the third view comes into
consideration. This constraint is also called trili-
near constraint.

An algorithm evaluating all available constraints
quantitatively is outlined in the block diagram (Fi-
gure 1), with the reconstruction and detection shown
as two separate steps. However, the actual algo-
rithm avoids the explicit reconstruction in favour of
a reduced computational complexity and a better
statistical manageability.

Motion Metric

The motion metric is a combination of two ap-
proaches; the two-view and the trifocal constraint.

Figure 2: Monocular motion metric. Point e2 is in the

center of the image (an example of a point moving from

the focus of expansion). The camera moves forward

along its optical axis observing a lateral moving point

x1 ↔ x2 ↔ x3. The closest point to x2 fulfilling

the two-view constraints is xf2. The error arising from

two-views is the distance d2. Transferring the points x1

and xf2 into the third view yields xf3. If the observed

3D point was actually static, x3 would coincide with

xf3. However, the 3D point is moving which causes the

trifocal error d3. Note: in general, x1 and xf3 do not

lie on the epipolar line l2.



Figure 3: The figure shows the monocular motion

analysis for a moving pedestrian appearing behind a

stationary vehicle. The colour encoding corresponds

to the motion metric (blue: 0 px, red: 2 px).

Full details of the two-view constraint can be found
in [6]. Basically, it the approach incorporates the
epipolar, positive depth, and positive height constraints.
This yields a distance error d2(x) (in pixels) from
the expected motion, see Figure 2 for a brief sum-
mary.

For the trifocal constrain consider the correspon-
dence x1 ↔ x2 ↔ x3. xf2 is defined such that
it fulfills the two-view constraint (i.e., x1 and xf2

constitute a valid 3D point). This 3D point is
projected into the third view yielding xf3. The
measured image point x3 will coincide with xf3 if
the observed 3D point is actually static. Other-
wise there is a distance d3 (see Figure 2) between
them which we call trifocal error. xf3 is computed
via the point-point-point transfer using the trifocal
tensor [4].

The overall error metric used is (see Figure 3 for
an example of results):

d(x) = d2(x) + d3(x) (1)

2.1.2 Stereo Motion (6D-Vision)

The core algorithm of the stereo vision system pre-
sented here (6-D vision) follows the principle of
fusing optical flow and stereo information given
in [3]. The basic idea of 6-D vision is to track
points in the image (using KLT), with depth es-
timated from stereo vision (e.g., [5]); these points
are tracked over two or more consecutive frames
and the spatial and temporal information is fused
using Kalman filters [12]. The result is a relatively
accurate estimation of the 3D-position and 3D-
motion of feature points, thus 6-D vision.

The fusion implies the knowledge of the ego-motion.
In our system we compute ego-motion from image
points found to be stationary using a Kalman filter
based approach described in [9]. This allows a fast
calculation using all information already acquired
by the system including inertial sensor data.

The result of the 6D-Vision algorithm are illustra-
ted in Figure 4, showing a pedestrian appearing

Figure 4: The figure shows the stereo motion analysis

for a moving pedestrian appearing behind a stationary

vehicle. The arrows point to the estimated 3D position

in 0.5 s, reprojected into the image. The colour

encoding corresponds to the estimated depth (close =

red, far = green).

behind a stationary vehicle. The image is taken
from a moving vehicle, driving at about 30 km/h .
We see, that 160 ms after the pedestrian’s head
was first visible, an estimation of its motion is
already available, which allows analysis for the risk
of collision. Full details of the 6D vision approach,
including the system model and measurement mo-
del of the Kalman filter can be found in [3].

Motion Metric

The motion metric d(x) used for this paper is sim-
ply the absolute velocity (i.e., speed) of the ego-
motion compensated 6D-Vision’s 3D velocity vec-
tor:

d(x) =
∣∣∣∣[Ẋ(x), Ẏ (x), Ż(x)

]>∣∣∣∣ (2)

where x = (u, v)> is the pixel position and Ẋ,Ẏ
and Ż are the Cartesian velocities (in m/s) for the
lateral, vertical and depth direction respectively.
|·| is the `2 norm.

2.2 Segmentation - Graph Cut

In order to derive objects from individually tracked
image features, the features have to be clustered
into coherent objects. Image features are usually
sparse and appropriate for ego-motion estimation,
however, they are not sufficient to describe whole
objects or object boundaries.

We therefore find objects by segmenting the image
into foreground (moving objects) and background
(stationary world) taking the motion metric va-
lues as probabilities for the tracked image features.
Image features with values above a noise threshold
vote for foreground, all other features below the
threshold vote for background. The noise in the
motion metric is mainly due to the tracking and
disparity measuring inaccuracies. For monocular
motion analysis we assume an inaccuracy of σ =
0.1 px, for the stereo approach the threshold is



set at σ = 1.0 m/s. Accumulations of such fo-
reground seeds denote an object. Single features
with a high error metric value need to be rejected
as outliers. We define an energy which penalizes
boundary length of object segments. The energy
is then minimized using the global optimal graph-
cut algorithm [2]. Further speed up techniques for
flow vector segmentation can be achieved using the
multi-resolution graph-cut [11].

In a first step, every image pixel x corresponds
to a node in a graph with a source node s re-
presenting the background and a sink node t for
the foreground. Pixels voting for background are
connected via an (undirected) edge to the source
node, those voting for foreground to the sink node
vice versa. The cost of an edge is defined as

d(x) < σ ⇒ e(s,x) = σ − d(x) (3)
d(x) > σ ⇒ e(x, t) = min(d(x)− σ,Cmax)(4)

where Cmax is a threshold to limit outliers. The
minimum function is necessary to limit the influence
of wrong tracks (outliers) on the result. Additio-
nally, neighbouring image pixels (here only the 4
next neighbours are taken into account) are connec-
ted by edges. The costs of these edges depend on
the grey value difference of its two end points. The
cost values are defined by

e(x,y) =
Ce

‖I(x)− I(y)‖+ ε
(5)

where Ce is a constant scale factor, used to regula-
rize the influence of edge costs (boundary length),
and ε is a small value to prevent numerical insta-
bility. I(x) is the grey value of x, in our case a
scalar value between 0 and 4095, as we use 12 bit
images. Equation 5 is designed such that segmen-
tation boundaries along high image gradients are
more likely than in homogeneous regions.

Clearly, the result depends on the costs of the edges,
especially on the constant Ce. If Ce is too low, the
segmentation only contains single pixels whereas a
high value of Ce results in only one small segment
(or no segment at all) because removing edges to
the source or the sink becomes less costly than re-
moving those edges connecting image pixels. Both
situations can be seen in Figure 5(b). If the sum of
all edges of a pixel is larger than Cmax, the pixel
will not be cut. Therefore we set:

∀ tracked x : e(x,y) = 0.5 Cmax (6)

To regularize the size of the segments, especially in
low-contrast regions such as the road surface, the
number of foreground pixels is penalized. This is
done by adding additional edges with constant cost
from every node to the source

∀ x : e(s,x) = CBG (7)

(a)

(b)

Figure 5: The main figure (a) shows the segmentation

for a moving pedestrian appearing behind a stationary

vehicle. (b) shows the influence of the edge costs on

the segmentation result. Edge cost from left to right:

Ce = {1.5, 50, 500, 1000}.

This is equivalent to adding a background prior for
every pixel in the image. In the following results
section we use constant values for the determi-
nable parameters of the algorithm demonstrating
the adaptability of the algorithm for different sce-
narios:

Cmax = 6 Ce = 150 CBG = 0.01

This is a usual mapping of image pixels onto a
graph representation as done in [2]. A cut in a
graph is found by removing edges such that no
more connections between source and sink exist.
The cost of a cut is the sum of its comprised edges.
The minimal cut is defined as the cut with the
minimal cost out of all possible cuts in the graph.
A good overview and diagram of graph-cut can be
seen in [11].

3 Experimental Results

In this section we apply our motion analysis and
segmentation to real imagery. We use the same
set of features (KLT tracks) for the monocular and
binocular motion analysis. The chosen parameters
for the segmentation are given in Section 2.2.

The first example in Figure 5(a) shows the seg-
mentation of the pedestrian appearing behind a
stationary vehicle. The segmentation boundary
proves to be accurate keeping in mind that features
are sparse in the image (see Figures 4 and 3). The
monocular and the stereo approach yield exactly
the same segmentation result for the lateral moving



(a)

(b)

Figure 6: Tracked image features (left) and segmenta-

tion (right) results of a crossing and a preceding object.

The monocular approach (a) performs similar to the

stereoscopic approach (b). The tracked image features

are color encoded according to the corresponding mo-

tion metric. (a) ranges from 0 px (blue) to 7 px (red).

(b) ranges from 0 m/s (blue) to 7 m/s (red).

(a)

(b)

Figure 7: Detection and segmentation results of prece-

ding and oncoming objects. The monocular approach

(a) only detects the lower parts of the preceding

objects. The oncoming object is not detected at all.

The stereoscopic approach (b) does not suffer from

these limitations (color encoding as in Figure 6).

pedestrian. This shows that for even small image
regions (50 × 50 pixels), the sparse features allow
a good segmentation.

Figure 6 shows a traffic scene with a crossing car
and a preceding car at a distance of 31 m. The
speed of both cars is approximately 36 km/h. Both
approaches, monocular and stereo motion analysis,
yield similar segmentation results. Looking at the
motion metric values, which are the driving ener-
gies for the graph-cut segmentation, the difference
between both approaches becomes visible. In the
monocular case, the energy values of features lo-
cated on the preceding car are small. This is due
to the fact that the car moves longitudinal at a

high distance and the corresponding flow vectors
do not differ much from those generated by statio-
nary objects. On the other hand, most flow vec-
tors induced by the crossing car deviate from any
flow vectors of stationary objects, which fulfill the
monocular motion constraints. However, the flow
vectors in the vicinity of the horizon are similar
to those generated by stationary objects. The seg-
mentation result still is accurate and both moving
vehicles are detected. For a more detailed investi-
gation of these phenomena refer to [8]. The stereo
approach measures the absolute 3D velocities of
tracked features. The preceding car is moving at
a relatively high speed of 36 km/h while the cros-
sing car is moving at lower speed. This is clearly
represented by the motion metric. In contrast to
the monocular approach, all features on both cars
yield correct results as the stereo approach does not
suffer from the motion ambiguity between features
on moving and stationary objects. The preceding
car is therefore fully segmented.

This situation becomes even more evident when
looking at the autobahn sequence in Figure 7. The
vehicles move with a speed of 84 km/h. The mo-
nocular approach is able to detect the car driving
ahead, and the truck, being overtaken, on the right
side. But only the lower parts of the vehicles are
detected, resulting in an incomplete segmentation
of the vehicles. The stereo approach not only de-
tects the vehicles completely, it is also able to de-
tect oncoming traffic (car to the left) and longitu-
dinally moving traffic outside of the vicinity of the
focus of expansion (car to the right).

The final example is an intersection with cars and
a cyclist (Figure 8). The left images in this figure
show that the stereo approach can detect vehicles
even near the image borders, where as the mono-
cular approach fails to detect the vehicle to the
left. The right hand images shows that both ap-

(a)

(b)

Figure 8: This figure shows the segmentation results

from an two images in an intersection sequence that

contains a cyclist. (a) shows the results from the

monocular approach and (b) the stereo approach.



proaches can detect different moving objects with
much different sizes. The cyclist is detected and
segmented as well as the moving vehicles in the
scene. The pedestrian is stationary (as can be seen
by no movement between the two images) so there
is no segmentation.

4 Conclusions

Kinesthesia, the sensation or perception of motion,
is one important part of human perception. It
encompasses both the perception of motion of one’s
own body and a spectators perception of the mo-
tion of a scene. In vehicle applications these two
steps refer to ego-motion and the detection of other
moving traffic participants. Visual kinesthesia is
done by using the sense of sight to observe the
effect of scene motion. In this paper, we modeled
such perception of motion using computer vision.

We investigated a monocular and a stereoscopic
approach to perceive motion in image sequences.
For each approach a motion metric was introduced
measuring the likelihood that a tracked image fea-
ture corresponds to a moving 3D point. We applied
the motion metrics and segmentation approach to
traffic scenes captured by a camera installed in a
moving vehicle. Using image segmentation based
on the investigated motion metrics we were able
to detect and segment other moving traffic parti-
cipants.

Image sequences on highways and urban roads using
the same parameters demonstrate the practicality
of this robust novel approach for motion segmen-
tation. We showed that both approaches are able
to detect; cars, trucks, cyclists, and pedestrians,
high-lighting that this segmentation is a good ini-
tialisation for other classification tools.

On average, the stereo approach outperforms the
monocular approach in terms of accuracy. Howe-
ver, with stereo there is a higher computational
cost as stereo disparity needs to be estimated. In
saying that, both approaches do run in real-time
(20 Hz) on standard off the shelf PC hardware
(Pentium Quad Core).

Future work in this area may consist of integrating
the tracking of features in the monocular approach
for a temporal integration of information. Also
the extension of the segmentation algorithm to dis-
tinguish between different motion directions is in
the scope of future work, to be able to determine
different objects and obstacles.
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