
Approximate Algorithms
for Touring a Sequence of Polygons

Fajie Li1 and Reinhard Klette2

1 Institute for Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

2 Computer Science Department, The University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

Abstract. Given two points p and q and a finite number of simple poly-
gons in a plane. The basic version of a touring-a-sequence-of-polygons
problem (in brief: a touring polygons problem, TPP) is how to find a
shortest path such that it starts at p, then it visits these polygons in the
given order, and finally it ends at q. This paper describes approximate
algorithms for different versions of touring polygons problems. Among
its important results it provides, for example, an answer to the previ-
ously open problem “What is the complexity of the touring polygons
problem for pairwise disjoint nonconvex simple polygons?” by providing
a κ(ε)-linear approximate algorithm for solving this problem, with

κ(ε) = (L0 − L1)/ε

where L0 is the length of the initial path and L is the true (i.e., optimum)
path length. As a further example, this paper finds an approximate so-
lution to the unconstrained touring polygons problem which is known to
be NP-hard.

Key words: rubberband algorithm, Euclidean shortest path, ESP, touring poly-
gons problem, TPP

1 Introduction

We recall notation from [2] for introducing a touring polygons problem (TPP).
Let π be a plane, which is identified with R2. Consider polygons Pi ⊂ π, where
i = 1, 2, . . . , k, and two points p, q ∈ π. Let p0 = p and pk+1 = q. Let pi ∈
R2, where i = 1, 2, . . . , k. Let ρ(p, p1, p2, , . . . , pk, q) denote the polygonal path
pp1p2 . . . pkq ⊂ R2. Let ρ(p, q) = ρ(p, p1, p2, , . . . , pk, q) if this does not cause any
confusion. If pi ∈ Pi such that pi is the first (i.e., along the path) point in ∂Pi

∩ ρ(p, pi) (∂P is the frontier of P), then we say that path ρ(p, q) visits Pi at pi,
where i = 1, 2, . . . , k. The unconstrained TPP is defined as follows:
How to find a shortest path ρ(p, p1, p2, , . . . , pk, q) such that it visits each of the
polygons Pi in the given order i = 1, 2, . . . , k?

2 Fajie Li and Reinhard Klette

Let Fi ⊂ R2 be a simple polygon such that (P •i ∪ P •i+1) ⊂ F •i (P • is the union
of ∂P and the topological interior of P); then we say that Fi is a fence [with
respect to Pi and Pi+1 (mod k+1)], where i = 0, 1, 2, . . . , k+1. Now assume that
we have a fence Fi for any pair of polygons Pi and Pi+1, for i = 0, 1, . . . , k + 1.
The constrained TPP is defined as follows:
How to find a shortest path ρ(p, p1, p2, , . . . , pk, q) such that it visits each of the
polygons Pi in the given order, also satisfying pipi+1(mod k + 1) ⊂ F •i , for
i = 1, 2, . . . , k?
Assume that for any i, j ∈ {1, 2, . . . , k}, ∂Pi ∩ ∂Pj = ∅, and each Pi is con-
vex; this special case is dealt with in [2]. The given algorithm runs in O(kn
log(n/k)) time, where n is the total number of all vertices of all polygons Pi

⊂ π, for i = 1, 2, . . . , k, and π. According to [2], “one of the most intriguing
open problems” identified by their results “is to determine the complexity of the
TPP for (pairwise) disjoint nonconvex simple polygons”. Algorithm 4 in Sec-
tion 3.1 answers this problem by providing an approximate algorithm running
in time κ(ε) ·O(n), where n is the total number of vertices of all polygons. Most
importantly, this paper provides an approximate solution (Theorem 3) to the
unconstrained touring polygons problem (TPP) which is known to be NP-hard
(see Theorem 1, cited from [2]).

2 Basics

We briefly recall some results used in the rest of this paper, starting with three
algorithms and a characterization of a time complexity.

Algorithm 1 2D ESP (see [7], pages 639–641)
Input: A simple polygon Π and two points p, q ∈ Π•.
Output: A set of vertices of a shortest path from p to q inside of Π•.

Algorithm 2 Convex Hull Algorithm (see, e.g., [6] or Figure 13.7, [3])
Input: A set of vertices of a simple polygon P .
Output: The set of vertices of the convex hull of P .

Algorithm 3 Tangent Calculation (see [8])
Input: A convex polygon P and a point p /∈ P •.
Output: Two points ti /∈ P • such that pti are tangents to P , where i = 1, 2.

Theorem 1. (see [2], Theorem 6) The touring polygons problem (TPP) is NP-
hard, for any Minkowski metric Lp (p ≥ 1) in the case of nonconvex polygons
Pi, even in the unconstrained (Fi = R2) case with obstacles bounded by edges
having angles 0, 45, or 90 degrees with respect to the x-axis.

In Section 4, we will apply Algorithm 5 to show that the same problem stated
in Theorem 1 can be approximately solved in κ(ε) linear time.

In the following, let V (P) be the set of vertices of polygon P and E(P) the
set of edges of P . de(v, e) is the Euclidean distance between a point v and a
segment e. Let κ(ε) = (L0 − L)/ε where L0 is the length of the initial path and
L is the true (i.e., optimum) path length.

Approximate Algorithms for Touring a Sequence of Polygons 3

3 The Algorithms

3.1 An Algorithm for the Unconstrained TPP

Our first algorithm (Algorithm 4) answers the open problem in Section 1 by an
approximate algorithm. Let π be a plane, containing the polygon V (Pi) ⊂ π,
where i = 1, 2, . . . , k. Suppose that, for any i, j ∈ {1, 2, . . . , k}, ∂Pi ∩ ∂Pj = ∅.
Let p, q ∈ π, p = p0, and q = pk+1.

Algorithm 4 Unconstrained TPP (for pairwise disjoint polygons)
Input: k disjoint polygons P1, P2, . . ., Pk (i.e., ∂Pi ∩ ∂Pi+1 = ∅, i = 1, 2, . . .,
k − 1); two points p, q /∈ ∂Pi, where i = 1, 2, . . ., k.
Output: The set of vertices of the shortest path which starts at p, then visits Pi

in order, and finally ends at q.

1: Let ε = 10−10 (i.e., an example of a chosen accuracy).
2: for each i ∈ {1, 2, . . . , k} do
3: Let pi be a point on ∂Pi.
4: end for
5: Compute the length L0 of the path ρ = 〈p, p1, p2, . . . , pk, q〉.
6: Let q1 = p and i = 1.
7: while i < k − 1 do
8: Let q3 = pi+1.
9: Compute a point q2 ∈ ∂Pi (see Lemmas 1 and 2, and Theorem 1, all in

[5]) such that
de(q1, q2) + de(q3, q2) = min{de(q1, q′) + de(q3, q′) : q′ ∈ ∂Pi}.

10: Update ρ by replacing pi by q2.
11: Let q1 = pi and i = i + 1.
12: end while
13: Let q3 = q.
14: Compute q2 ∈ ∂Pk such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ ∂Pk}.
15: Update ρ by replacing pk by q2.
16: Compute the length L1 of the updated path ρ = 〈p, p1, p2, . . . , pk, q〉.
17: Let δ = L0 − L1.
18: if δ > ε then
19: Let L0 = L1 and go to Step 6.
20: else
21: Output {p, p1, p2, . . . , pk, q} and Stop.
22: end if

The correctness of this algorithm follows by

Theorem 2. The solution obtained by Algorithm 4 is an approximate global
solution to the touring polygons problem (without joint polygons).

Proof. This proof is a modification of the one given for Theorem 2 in [5]. Let X
= Πk

i=1∂Pi; ∂Pi is as defined in Algorithm 4. Let Y be the set of all solutions

4 Fajie Li and Reinhard Klette

obtained by Algorithm 4. By Lemmas 1, 2, and Theorem 1 of [5], Algorithm 4
defines a continous function, denoted by f , mapping from X to Y depending on
the chosen accuracy ε > 0.

Note that, if each ∂Pi is degenerated into a single edge, then there exists a
unique solution to the ESP problem (see [1, 9, 11]). Now, let v = (v1, v2, . . . , vk)
∈ Y . Because of vi ∈ ∂Pi, where i = 1, 2, . . ., k, it follows that Y is a finite set.

Now we prove that Y is a singleton. Otherwise, take v0 ∈ Y , then we have
f−1(v0) ⊂ X. For each v ∈ f−1(v0), as f is a continous function, there exists a
sufficiently small open neighborhood (with respect to the Euclidean topology on
X) of v, denoted by N(v, δv), such that for each v′ ∈ N(v, δv), f(v′) = v0. Thus,
N(v, δv) ⊆ f−1(v0) and ∪v∈f−1(v0)N(v, δv) ⊆ f−1(v0). On the other hand, as
f−1(v0) = {v : v ∈ f−1(v0)} and v ∈ N(v, δv), thus we have that f−1(v0) ⊆
∪v∈f−1(v0)N(v, δv). Therefore, f−1(v0) = ∪v∈f−1(v0)N(v, δv). As N(v, δv) is an
open set, f−1(v0) is an open set as well. Let f−1(v0) = ∪k

i=1Si, where Si is an
open subset of ∂Pi, i = 1, 2, . . ., k. Recall that f−1(v0) ⊂ X, so there exists a
Si such that ∅ ⊂ Si ⊂ ∂Pi. Without loss of generality, suppose that ∅ ⊂ S1 ⊂
∂P1. Now, S1 is a nonempty open subset of ∂P1. S1 is a union of a countable
number of open intervals (Proposition 5.1.4, [10]). Thus, there exists a point w1

∈ ∂P1 \ S1 such that, for each positive ε1, there exists a point w′1 ∈ N(w1, ε1) ∩
S1 [again, N(w1, ε1) is an open neighborhood with respect to the usual topology
on ∂P1]. Therefore, there exists a point v1 ∈ X \ f−1(v0) such that, for each
positive ε1, there exists a point v′1 ∈ N(v1, ε1) ∩ f−1(v0). This contradicts that
f is a continous function on X. Thus, Y is a singleton. ut

The main idea of the proof is as follows: every considered (i.e., defined by the
ESP problem environment!) continuous function with a finite number of local
minima should have a unique minimum.

Note that Algorithm 4 still works if the input polygons are not in the same
plane (even if the edges of a single polygon are not in the same plane). Also, the
input polygons do not have to be simple.

The following procedure handles the case when polygons are not (pairwise)
disjoint, by “slightly” modifying one of the polygons (see Figure 1).

Procedure 1 Case of overlapping polygons
Input: A point p and two polygons P1 and P2 such that p ∈ ∂P1 ∩ ∂P2.
Output: A point q /∈ ∂P2 (and a “slightly” updated P1 such that it does not
intersect with P2 at point p).

1: Let ε = 10−10 (i.e., an assumed accuracy).
2: Find a point ej ∈ E(Pj), where j = 1, 2, such that p ∈ e1 ∩ e2.
3: Let e1 = q1q2. Let q3 and q4 be two points in two segments q1p and q2p,

respectively (see Figure 1) such that de(qj , p) ≤ ε′ and qj /∈ ∂P2, where j =
3, 4.

4: Find two points q′3 and q′4 such that q′3q3 and q′4q4 ⊥ the plane defined by e1
and e2, and de(q′3, q3) = de(q′4, q4) = 2 × ε′.

5: Slightly update P1 by replacing the edge e1 = q1q2 by polyline q1q3q′3q
′
4q4q2.

6: Output q′3.

Approximate Algorithms for Touring a Sequence of Polygons 5

p

q1

P1

P2
q4

q3

q2

e1
e2

Fig. 1. Illustration for Procedure 1.

If there exist i, j ∈ {1, 2, . . . , k} such that i 6= j and ∂Pi ∩ ∂Pi+1 6= ∅, then
we modify Algorithm 4 as follows: apply Procedure 1 after Steps 7 and 12.

Algorithm 5 Unconstrained TPP (polygons do not have to be pairwise disjoint)
Input: k polygons P1, P2, . . ., Pk; two points p, q /∈ ∂Pi, where i = 1, 2, . . ., k.
Output: The set of vertices of the shortest path which starts at p, then visits Pi

in order, and finally ends at q.

1: Let ε = 10−10 (the accuracy).
2: for each i ∈ {1, 2, . . . , k} do
3: Let pi be a point on ∂Pi.
4: end for
5: Compute the length L0 of the path ρ = 〈p, p1, p2, . . . , pk, q〉.
6: Let q1 = p and i = 1.
7: while i < k − 1 do
8: if (pi = pi−1∧pi 6= pi+1)∨(pi 6= pi−1∧pi = pi+1)∨(pi = pi−1∧pi = pi+1)

then
9: Apply Procedure 1 to compute a point pi such that pi 6= pi−1 and

pi 6= pi+1.
10: end if
11: Let q3 = pi+1.
12: Compute a point q2 ∈ ∂Pi such that

de(q1, q2) + de(q3, q2) = min{de(q1, q′) + de(q3, q′) : q′ ∈ ∂Pi}.
13: Update ρ by replacing pi by q2.
14: Let q1 = pi and i = i + 1.
15: end while
16: if (pk = pk−1∧pk 6= pk+1)∨(pk 6= pk−1∧pk = pk+1)∨(pk = pk−1∧pk = pk+1)

then
17: Apply Procedure 1 to compute a point pk such that pk 6= pk−1 and

pk 6= pk+1.
18: end if
19: Let q3 = q.
20: Compute q2 ∈ ∂Pk such that

de(q1, q2) + de(q3, q2) = min{de(q1, q′) + de(q3, q′) : q′ ∈ ∂Pk}.

6 Fajie Li and Reinhard Klette

21: Update P by replacing pk by q2.
22: Compute the length L1 of the updated path ρ = 〈p, p1, p2, . . . , pk, q〉.
23: Let δ = L0 − L1.
24: if δ > ε then
25: Let L0 = L1 and go to Step 6.
26: else
27: Output {p, p1, p2, . . . , pk, q} and Stop.
28: end if

Basically following the same way as provided with the proof of Theorem 2,
we proved that Algorithm 5 computes an approximate global solution to the
unconstrained TPP (but will not provide here due to given similarities).

Section 4 applies this algorithm to show that the TPP, for not necessarily
pairwise disjoint, and not necessarily convex, simple polygons can be approxi-
mately computed in κ(ε) linear time. By Theorem 1, finding the exact solution
of this problem is NP-hard.

3.2 Algorithms for Solving the Constrained TPP

The following Procedure compute a “maximal” polyline in the frontier of a small
polygon P such that it “can be seen” by a vertex of a big polygon Π. It will be
used in Steps 9 and 10 in the next procedure.

Procedure 2 Input: Two simple polygons Π and P such that P • ⊂ Π•; two
points q ∈ ∂Π and p ∈ ∂P such that there exist two points p1, p2 ∈ ∂P such
that ppi ⊂ ∂P , and de(p, pi) is a sufficiently small positive number, and 4qppi

⊂ Π•, where i = 1, 2.
Output: Two points p′1, p′2 ∈ ∂P such that pp′i ⊂ ∂P , and de(p, p′i) is a positive
number as large as possible such that 4qpp′i ⊂ Π•, where i = 1, 2.

1: if p /∈ V (P) then
2: There exists an edge e = v1v2 ∈ E(P) such that p ∈ e and de(p, vi) > 0,

i = 1, 2; select such an edge for the following.
3: if q, v1 and v2 are colinear (see top left, Figure 2) then
4: Let p′i = vi.
5: else
6: for i ∈ {1, 2} do
7: if qvi ∩ ∂Π = ∅ (see top middle, Figure 2) then
8: Let p′i = vi.
9: else

10: Apply Algorithm 2 and Algorithm 3 to find a point p′i ∈ e such
that qp′i is a tangent to Π (see top right, Figure 2).

11: end if
12: end for
13: end if
14: else

Approximate Algorithms for Touring a Sequence of Polygons 7

q
v1

p

v2

v2

q

v1
p

v1

q

p

v2

‘p1

‘p2

q

p

v1

v2
‘p2

‘p1p

q

v1

v2

p

q

p
‘p2

‘p1 v1

v2‘

Fig. 2. Illustration for Procedure 2: Π is shown as the larger simple polygon, and P is
the (smaller) triangle inside of Π.

15: There exist two points vi ∈ E(P) such that pvi ∈ E(P); select such points.
16: if v1 and v2 are on different sides of qp (bottom left, Figure 2) then
17: Proceed analogous to Steps 6–12.
18: else
19: Find v ∈ {v1, v2} such that

de(v, qp) = min{de(v′, qp) : v′ = v1 ∨ v′ = v2}.
20: if qv ∩ ∂Π = ∅ (see bottom middle, Figure 2) then
21: Let p′i = qv ∩ pvi, where i = 1, 2.
22: else
23: Apply Algorithm 2 and Algorithm 3 to find a point p′ such that qp′

is a tangent to Π (see bottom right, Figure 2).
24: Let p′i = qp′ ∩ pvi, where i = 1, 2.
25: end if
26: end if
27: end if
28: Output p′i, i = 1, 2, and Stop.

The following Procedure will be frequently used in Step 7 of the general TPP
algorithm (Algorithm 6). It computes a local shortest path approximately.

Procedure 3 Input: Three polygons P1, P2 and P3 in that order, the fence of
P1 and P2, denoted by F12, the fence of P2 and P3, denoted by F23, and three
points pi ∈ ∂Pi, where i = 1, 2, 3.
Output: The set of all vertices of the (approximate) shortest path which starts
at p1, then visits P2, and finally ends at p3 (see Figure 3).

8 Fajie Li and Reinhard Klette

p1

p2

p3

F12

F23

P3

P2

P1

Fig. 3. Illustration for Procedure 3.

1: Let ε = 10−10 (the accuracy)
2: if (p2 = p1 ∧ p2 6= p3) ∨ (p2 6= p1 ∧ p2 = p3) ∨ (p2 = p1 ∧ p2 = p3) then
3: Apply Procedure 1 to compute a point which updates p2 such that p2 6= p1

and p2 6= p3.
4: end if
5: Let p1, p2 and F12 be the input for Algorithm 1 to compute a shortest path

from p1 to p2 inside of F12, denoted by ρ12.
6: Let p2, p3 and F23 be the input for Algorithm 1 to compute a shortest path

from p2 to p3 inside of F23, denoted by ρ23.
7: Let V = V (ρ12) ∪ V (ρ23).
8: Find q1 and q3 ∈ V such that {q1, p2, q3} is a subsequence of V .
9: Let F12, P2, q1, and p2 be the input for Procedure 2 to compute a polyline,

denoted by v1p2v2.
10: Let F23, P2, q3, and p2 be the input for Procedure 2 to compute a polyline,

denoted by u1p2u2.
11: Let s = v1p2v2 ∩ u1p2u2.
12: Find a point p′2 ∈ ∂s such that

de(q1, p′2) + de(p′2, q3) = min{de(q1, p′) + de(p′, q3) : p′ ∈ ∂s}.
13: Update set V by letting p2 = p′2.
14: Output V .

Note that in Step 3, the updated point p2 depends on the chosen value of ε′.
The following is the main algorithm in this paper:

Algorithm 6 Constrained TPP
Input: k polygons Pi; k polygons Fi which are the fence of Pi and Pi+1 (mod k),
where i = 0, 1, . . ., k − 1.
Output: The set of vertices of the shortest path ρ = (p0, p1, . . . , pk−1, p0) such
that pi ∈ ∂Pi, where i = 0, 1, . . ., k − 1; and L1, its calculated length.

1: for each i ∈ {0, 1, . . . , k − 1} do
2: Let pi be a point on ∂Pi.

Approximate Algorithms for Touring a Sequence of Polygons 9

3: end for
4: Let V = {p0, p1, . . . , pk−1}.
5: Calculate the perimeter L0 of that polygon which has V as its set of vertices

(in the given order).
6: for each i ∈ {0, 1, . . . , k − 1} do
7: Use Pi−1, Pi, Pi+1 (mod k) and Fi−1, Fi (mod k) as input for Procedure 3

for updating pi and for calculating set Vi.
8: Let V ′ = V and update V by replacing {pi−1, . . . , pi, . . . , pi+1} by Vi.
9: end for

10: Let V = {q0, q1, . . . , qm}.
11: Calculate the perimeter L1 of the polygon which has V as its set of vertices.
12: if L0 − L1 > ε then
13: Let L0 = L1, V = V ′, and go to Step 4.
14: else
15: Output the updated set V and (its) calculated length L1.
16: end if

Analogous to the proof of Theorem 2, we proved that Algorithm 6 computes
an approximate global solution to the constrained TPP (but do not provide the
proof here due to similarities).

4 Computational Complexity

This section analyzes (step by step) the time complexity of procedures and al-
gorithms presented above in this paper.

4.1 Unconstrained TPP

Lemma 1. Algorithm 4 has a time complexity in κ(ε) · O(
∑k

j=1 |V (Pj)|).

Proof. Steps 1, 6, 8, 10, 11, 13, 15, 17, 19 only require constant time. Steps
2–5, 16, 21 can be computed in O(k) time. By the proofs of Lemmas 1, 2 and
Theorem 1, [5], Steps 9 and 14 can be computed in O(|V (Pj)|) time, where
V (Pj) is as in Algorithm 4, for j = i, k. Thus, each iteration of Algorithm 4 can
be computed in time O(

∑k
j=1 |V (Pj)|). Therefore, Algorithm 4 can be computed

in κ(ε) · O(
∑k

j=1 |V (Pj)|) time. This proves the lemma. ut

Lemma 2. Procedure 1 can be computed in O(|E(P1)|+ |E(P2)|) time.

Proof. Steps 1, 4, 5, and 6 only need constant time. Step 2 can be computed in
timeO(|E(P1)|+|E(P2)|), and Step 3 in timeO(|E(P2)|). Therefore, Procedure 1
can be computed in O(|E(P1)|+ |E(P2)|) time. ut

Lemma 3. Algorithm 5 can be computed in time κ(ε) · O(
∑k

j=1 |E(Pj)|).

10 Fajie Li and Reinhard Klette

Proof. The difference between Algorithm 5 and Algorithm 4 is defined by Steps
8–10 and 16–18. By Lemma 2, Steps 8–10 and 16–18 can be computed in
O(|E(Pj−1)|+2|E(Pj)|+ |E(Pj+1)|) time, where j = i, k. Thus, each iteration of
Algorithm 5 can be computed in time O(

∑k
j=1 |E(Pj)|) Therefore, Algorithm 5

can be computed in κ(ε) · O(
∑k

j=1 |E(Pj)|) time. This proves the lemma. ut

By Lemmas 1 and 3, we have the following

Theorem 3. The unconstrained TPP can be solved approximately in κ(ε) ·O(n)
time, where n is the total number of vertices of all polygons involved.

4.2 Constrained TPP

Lemma 4. Procedure 2 can be computed in O(|V (Π)|+ |V (P)|) time.

Proof. Step 1 can be computed in O(|V (P)|) time. Step 2 can be computed in
O(|E(P)|) = O(|V (P)|) time. Steps 3–8 only need constant time. Steps 10 and
23 can be computed in O(|V (Π)|) time (see [6], [8]).

Step 15 can be computed inO(|E(P)|) time. Steps 16 and 17 can be computed
in O(|V (Π)|) time. Steps 19–21, 24 and 28 only need constant time.

Altogether, the time complexity of Procedure 2 is O(|V (Π)|+ |V (P)|). ut

Lemma 5. Procedure 3 can be computed in time
O(|E(P1)|+ 2|E(P2)|+ |E(P3)|+ |E(F12)|+ |E(F23)|).

Proof. Step 1 requires only constant time. By Lemma 2, Steps 2–4 can be
computed in time O(|E(P1)| + 2|E(P2)| + |E(P3)|). Step 5 can be computed
in O(|V (F12)|) (see [7]). Step 6 can be computed in O(|V (F23)|). Step 7 in
O(|V (F12)|+ |V (F23)|)) time. Step 8 in O(|V |)) time. By Lemma 4, Step 9 can
be computed in O(|V (F12)|+|V (P2)|); Step 10 can be computed in O(|V (F23)|+
|V (P2)|). Steps 11–13 require only constant time. Step 14 is in O(|V |)) time.

Therefore, Procedure 3 can be computed in O(|E(P1)|+2|E(P2)|+ |E(P3)|+
|E(F12)|+ |E(F23)|) time. This proves the lemma. ut

Lemma 6. Algorithm 6 can be computed in time κ(ε) · O(n), where n is the
total number of all vertices of the polygons involved.

Proof. Steps 1–5 can be computed in O(k) time. By Lemma 5, each iteration
in Steps 7 and 8 can be computed in time O(

∑k−1
i=0 (|E(Pi−1)| + 2|E(Pi)| +

|E(Pi+1)|+ |E(Fi−1)|+ |E(Fi)|)). Steps 10–16 can be computed in O(|V |). Note
that |V | ≤

∑k−1
i=0 (|V (Pi)| + |V (Fi)|), |V (Pi)| = |E(Pi)|, and |V (Fi)| = |E(Fi)|,

where i = 0, 1, . . ., k − 1. Therefore, Algorithm 6 can be computed in κ(ε) ·
O(

∑k−1
i=0 (|E(Pi−1)| + 2|E(Pi)| + |E(Pi+1)| + |E(Fi−1)| + |E(Fi)|)) time, where

each index is taken mod k. This time complexity is equivalent to κ(ε) · O(n)
where n is the total number of vertices of all polygons. ut

Approximate Algorithms for Touring a Sequence of Polygons 11

Lemma 6 allows to conclude the following

Theorem 4. The constrained TPP can be solved approximately in κ(ε) · O(n)
time, where n is the total number of all vertices of involved polygons.

According to Theorem 1, Theorem 4 is the best possible result in some sense.

5 Conclusions

The paper started with recalling an open problem published in 2003 in [2], that
“one of the most intriguing open problems ... is to determine the complexity of
the TPP for (pairwise) disjoint nonconvex simple polygons”. The paper described
a simple rubberband algorithm ([4]) which “approximately” answers this open
problem.

Note that the solution in [2] is only valid if the following two requirements
are satisfied: the polygons should be convex and pairwise disjoint; the given
algorithm has time complexity κ(ε)·O(kn log(n/k)), where n is the total number
of vertices of involved polygons Pi ⊂ π, for i = 1, 2, . . . , k.

The algorithm presented in this paper also applies to nonconvex polygons,
even non-simple polygons, and polygons whose edges do not have to be in the
same plane, and it is of κ-linear time complexity. An important result in this
paper is Theorem 3 which provides an approximate solution to the unconstrained
touring polygons problem (TPP) which is known to be NP-hard (see the cited
Theorem 1).

References

1. J. Choi, J. Sellen, and C.-K. Yap. Precision-sensitive Euclidean shortest path in
3-space. In Proc. Annu. ACM Sympos. Computational Geometry, pages 350–359,
1995.

2. M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring a sequence of polygons. In
Proc. STOC, pages 473–482, 2003.

3. R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco,
2004.

4. F. Li and R. Klette. Rubberband algorithms for solving various 2D or 3D shortest
path problems. In Proc. Computing: Theory and Applications, The Indian Statistical
Institute, Kolkata, pages 9 - 18, IEEE, 2007.

5. F. Li and R. Klette. Approximate Shortest Path Calculations in Simple Polyhedra.
MI-techTR 23, The University of Auckland, 2008 (http://www.mi.auckland.ac.
nz/index.php?option=com_content\&view=\\article\&id=91\&Itemid=76).

6. A. Melkman. On-line construction of the convex hull of a simple polygon. Informa-
tion Processing Letters, 25:11–12, 1987.

7. J. S. B. Mitchell. Geometric shortest paths and network optimization. In Handbook
of Computational Geometry (J.-R. Sack and J. Urrutia, editors). pages 633–701,
Elsevier, 2000.

8. D. Sunday. Algorithm 14: Tangents to and between polygons. See http://

softsurfer.com/Archive/algorithm_0201/ (last visit: November 2008).

12 Fajie Li and Reinhard Klette

9. M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput.,
15:193–215, 1986.

10. B. G. Wachsmuth. Interactive real analysis. See http://web01.shu.edu/

projects/reals/topo/index.html (last visit: October, 2008)
11. C.-K. Yap. Towards exact geometric computation. Computational Geometry: The-

ory Applications., 7:3–23, 1997.

