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Abstract. This paper considers the calculation of a Euclidean shortest path (ESP)
in a three-dimensional (3D) polyhedral space Π . We propose an approximate
κ(ε) · O(M |V |) 3D ESP algorithm (excluding preprocessing), with preprocess-
ing time complexity O(M |E| + |S| + |V | log |V |), for solving a special, but
‘fairly general’ case of the 3D ESP problem, where Π does not need to be con-
vex, V and E are the sets of vertices and edges of Π , respectively, and S is
the set of faces (triangles) of Π; M is the maximal number of vertices of a so-
called critical polygon; κ(ε) = (L0 − L)/ε where L0 is the length of an initial
path and L is the true (i.e., optimum) path length. The given algorithm solves
approximately three (previously known to be) NP-complete or NP-hard 3D ESP
problems in time κ(ε) · O(k), where k is the number of layers in a stack, which
is introduced in this paper as being the problem environment. The proposed ap-
proximation method has straightforward applications for ESP problems when an-
alyzing polyhedral objects (e.g., in 3D imaging), of for ‘flying’ over a polyhedral
terrain.

1 Introduction and Related Work

There exist already several approximation algorithms for 3D ESP calculations, and we
briefly recall those. Pioneering the field, [12] presents an

O(n4(L+ log(n/ε))2/ε2)

algorithm for the general 3D ESP problem, where n is the number of polyhedral scene
elements (that is, vertices, edges, and faces of the polyhedron), ε the accuracy of the al-
gorithm, and L the number of bits of the largest integer describing the coordinates of the
polyhedral scene elements. This was followed by [6], which presents an approximation
algorithm for computing an (1 + ε)-shortest path from p to q in time

O(n2λ(n) log(n/ε)/ε4 + n2 log nr log(n log r))

where r is the ratio of the Euclidean distance de(p, q) to the length of the longest edge
of any given obstacle, and

λ(n) = α(n)O(α(n)O(1))
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where α(n) = A−1(n, n) is the inverse Ackermann function [9], which grows very
slowly (because A grows very rapidly). Let there be a finite set of polyhedral obstacles
in R3. Let p, q be two points outside of the union of all obstacles. Assume that 0 < ε <
1; [7] gives an O(log(n/ε)) algorithm to compute an (1 + ε)-shortest path from p to q
such that it avoids the interior of any obstacle. The algorithm is based on a subdivision
of R3 which is computed in O(n4/ε6). Given a convex partition of the free space,
[2] presents an O((n/ε3)(log 1/ε)(log n)) algorithm for the general 3D ESP problem.
Altogether, the task of finding efficient and easy to implement solutions in this field is
certainly challenging; see, for example, [10] saying on page 666 the following: “The
problem is difficult even in the most basic Euclidean shortest-path problem (ESP) in
a three-dimensional polyhedral domain Π , and even if the obstacles are convex, or
the domain Π is simply connected.” In this paper, we apply a simplified version of a
rubberband algorithm (see [8] for a general introduction to those algorithms) to present
an approximate

κ(ε) · O(M |V |) +O(M |E|+ |S|+ |V | log |V |)

algorithm for ESP calculation when Π is a (type 2, see Definition 2 below) simply
connected polyhedron which is not necessarily convex. V and E are the sets of vertices
and edges of Π , respectively; S is the set of faces (triangles) of Π; M is the maximal
number of vertices of the critical polygon (see Definition 1 below); κ(ε) = (L0−L)/ε,
where L0 is the length of an initial path and L the true (i.e., optimum) path length.

The given algorithm solves approximately three NP-complete or NP-hard 3D ESP
problems in time κ(ε) · O(k), where k is the number of layers in a stack, which is
introduced as a ‘problem environment’ below. Our algorithm has straightforward ap-
plications for ESP problems when analyzing polyhedral objects (e.g., in 3D imaging;
for the extensive work using geodesics we just cite [16] as one example), or for ‘flying’
over a polyhedral terrain. The best known result for the latter problem is due to [17]
by proposing anO((n/ε)(log n)(log log n)) algorithm for computing a (2(p−1)/p + ε)-
approximation of an Lp-shortest path above a polyhedral terrain.

Section 2 provides necessary definitions and theorems. Section 3 describes our al-
gorithm. Section 4 gives the time complexity of the algorithm. Section 5 illustrates the
algorithm by some examples. Section 6 concludes the paper.

2 Basics

We denote byΠ a simple polyhedron (i.e., a compact polyhedral region which is home-
omorphic to a unit ball) in the 3D Euclidean space, which is equipped with an xyz
Cartesian coordinate system. Let E be the set of edges of Π; V = {v1, v2, . . . , vn} the
set of vertices ofΠ . For p ∈ Π , let πp be the plane which is incident with p and parallel
to the xy-plane. The intersection πp ∩Π is a finite set of simple polygons; a singleton
(i.e., a set only containing a single point) is considered to be a degenerate polygon. –
Now let P be such a simple polygon, defined by p and Π .

Definition 1. Any simple polygon P , being one connected component of πp ∩ Π , is a
critical polygon of Π (with respect to p).
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Any vertex p defines in general a finite set of critical polygons. The notion of a crit-
ical polygon is also generalized as follows: We assume a simply connected (possibly
unbounded) polyhedron Π , and we allow that the resulting (generalized) critical poly-
gons may also be unbounded. For example, a generalized critical polygon may have
a vertex at infinity, or it can be the complement of a critical polygon, as specified in
Definition 1. (Section 5 will also make use of generalized critical polygons.)

Definition 2. We say that a simple polyhedron Π is a type 1 polyhedron iff any vertex
p defines exactly one convex critical polygon. We say that a simple polyhedron Π is a
type 2 polyhedron iff any vertex p defines exactly one simple critical polygon.

Obviously, each type 1 simple polyhedron is also a type 2 simple polyhedron. Our
main algorithm below applies to type 2 simple polyhedra. – We recall some concepts
introduced in [11]. Let (x0, y0, z0) be a point in 3D space. Let

S1 = {(x, y, z0) : x0 ≤ x <∞∧ y0 ≤ y <∞}
S2 = {(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y <∞}
S3 = {(x, y, z0) : −∞ < x ≤ x0 ∧ −∞ < y ≤ y0}
S3 = {(x, y, z0) : x0 ≤ x <∞∧−∞ < y ≤ y0}

Si is called a q-rectangle of type i, where i = 1, 2, 3, 4. Furthermore, let (x1, y1, z0) be
a point in 3D space such that x1 > x0 and y1 > y0. Let

Sh = {(x, y, z0) : −∞ < x <∞∧ y0 ≤ y ≤ y1}
Sv = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y <∞}

Finally, let

Sh1 = {(x, y, z0) : x0 ≤ x <∞∧ y0 ≤ y ≤ y1}
Sh2 = {(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y ≤ y1}
Sv1 = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ y0 ≤ y <∞}
Sv2 = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y ≤ y0}

Sh, Sv , Shj , and Svj are called horizontal or vertical strips, for j = 1, 2. According to
their geometric shape, we notice that

(i) S1 [S2, S3, S4] is unbounded in direction (+x,+y) [(−x,+y), (−x,−y), (+x,−y)];
(ii) Sh [Sv] is unbounded in direction ±x [±y];

(iii) Sh1 [Sh2 , Sv1 , Sv2 ] is unbounded in direction +x [−x, +y, −y].

Si, Sh, Sv , Shj , and Svj are also called axis-aligned rectangles, where i = 1, 2, 3, 4
and j = 1, 2. The stack S of axis-aligned rectangles is called terrain-like if, for at least
one of the four directions −x, +x, −y, or +y, each rectangle in S is unbounded.

Let s0, s1 and s2 be three segments. Let pi = (pi1 , pi2 , pi3) be on si, for i = 0, 1, 2.
Then we have the following (which we could not find elsewhere; so we state and prove
it here for completeness):
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Lemma 1. A unique point p′1, which satisfies

de(p′1, p0) + de(p′1, p2) = min{p1 : de(p1, p0) + de(p1, p2) ∧ p1 ∈ s1}

can be computed in O(1) time.

Proof. Let the two endpoints of s1 be a1 = (a11 , a12 , a13) and b1 = (b11 , b12 , b13).
Let p0 = (p01 , p02 , p03). Point p1 can be written as (a11 + (b11 − a11)t, a12 + (b12 −
a12)t, a13 + (b13 − a13)t). The formula

de(p1, p0) =

√√√√ 3∑
i=1

[(a1i
− p0i

) + (b1i
− a1i

)t]2

can be simplified: Without loss of generality, we can assume that s1 is parallel to one
of the three coordinate axes. It follows that only one element of the set {b1i

− a1i
: i =

1, 2, 3} is not equal to 0, and the other two are equal to 0. Thus, we can assume that

de(p1, p0) = |A1|
√

(t+B1)2 + C1

where A1, B1 and C1 are functions of a1i , b1i and p0i , for i = 0, 1, 2. – Analogously,

de(p1, p2) = |A1|
√

(t+B2)2 + C2

where B2 and C2 are functions of a1i
, b1i

and p2i
, for i = 0, 1, 2. In order to find an

optimum point p′1 ∈ e1 such that

de(p′1, p0) + de(p′1, p2) = min{p1 : de(p1, p0) + de(p1, p2), p1 ∈ s1}

we can solve the equation

∂(de(p1, p0) + de(p1, p2))
∂t

= 0

The unique solution is t = −(B1C2 +B2C1)/(C2 + C1). ut

In what follows, Π is a type 2 simple polyhedron. For a simple polygon P , let P ◦

be its topological interior, P • the closure of P ◦, and ∂P = P • \ P ◦ (the frontier of P •).
Let ρ(p, q) be a path from p to q, and px(py, pz) the x(y, z)-coordinate of p.

Let q1, q2 ∈ R3 such that q1 6= q2. Let the coordinates of qi be equal to (xi, yi, zi),
where i = 1, 2. We use (standard) lexicographic order: q1 is before q2 iff q1x < q2x, or
q1x = q2x and q1y < q2y , or q1x = q2x and q1y = q2y and q1z < q2z . If q1 is before
q2, then we write that min{q1, q2} = q1, otherwise min{q1, q2} = q2. Let s1 and s2 be
two segments. Let p1 and p2 be two points such that pi /∈ sj , where i, j = 1, 2. Let S =
{p : p ∈ s1 ∨ p ∈ s2}. Then we have the following

Lemma 2. A point p ∈ S such that

de(p1, p) + de(p2, p) = min{de(p1, q) + de(p2, q) : q ∈ S}

can be computed in O(1) time.
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Proof. By Lemma 1, there is a unique point qi ∈ si such that

de(p1, qi) + de(p2, qi) = min{de(p1, q) + de(p2, q) : q ∈ si}

where i = 1, 2. Let s = q1q2. We can find the required point p as follows:
Case 1. de(p1, q1) + de(p2, q1) < de(p1, q2) + de(p2, q2). Let p = q1.
Case 2. de(p1, q1) + de(p2, q1) > de(p1, q2) + de(p2, q2). Let p = q2.
Case 3. de(p1, q1) + de(p2, q1) = de(p1, q2) + de(p2, q2). Let p = min{q1, q2}. ut

From the proof it also follows that such a point p is actually uniquely specified if it
is obtained by comparing it with the other candidate points not only by length but also
by coordinates.

Let {s1, s2, . . . , sm} be a set of segments. Let p1 and p2 be two points such that
pi /∈ sj , where i = 1, 2, and j = 1, 2, . . ., m. Let S = {p : p ∈ sj ∧ j = 1, 2, . . . ,m}.
By Lemma 2, we have immediately the following

Theorem 1. A point p ∈ S which satisfies

de(p1, p) + de(p2, p) = min{de(p1, q) + de(p2, q) : q ∈ S}

can be computed in O(m) time.

pp1

p2

Fig. 1. Two points p1 and p2 and m segments.

Note that the specified point p in Theorem 1 is not unique in general. See Figure 1;
for example, there could be a ‘symmetric minimum’. However, using the described al-
phabetic order, we can select a unique minimum with respect to this order. This unique-
ness is very important for the proof of the correctness of Algorithm 2 below. (Obviously,
Theorem 1 is still correct if sj is a straight line or a ray, for all or some j = 1, 2, . . ., m.)

3 ESP Calculation

We start presenting a procedure used by a rubberband algorithm (Algorithm 1 below)
which is then frequently called in the main algorithm (Algorithm 2) of this section.

Let S = {41,42, . . . ,4m} be the set of all faces of Π . – The following very
basic Procedure 1 simply ‘walks around’ the polyhedron by tracing an intersection with
a given plane; it is given here for completeness.

Procedure 1 (compute a sequence of vertices of the critical polygon; see Fig. 2)
Input: A set S and a vertex v ∈ V such that |πv ∩Π| > 1.
Output: A sequence Vv of all vertices of the critical polygon Pv .
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v

z

y

x

Fig. 2. The labeled vertex v identifies a sequence of six vertices of the critical polygon Pv , defined
by the intersection of plane πv with the shown Schönhardt polyhedron.

1: Let Sv = {4 : 4 ∈ S ∧ e = uw ∈ E(4) ∧ (uz ≤ vz ≤ wz ∨ wz ≤ vz ≤ uz)},
and E(Sv) = {e : ∃4 ∈ Sv ∧ e ∈ E(4)}.

2: Let Vv = ∅, and v1 = v.
3: Let Vv = Vv ∪ {v1}.
4: Find a face 41 ∈ Sv such that v1 ∈ V (41), and such that there exists an edge
e ∈ E(41) with v1 /∈ e and πv1 ∩ e 6= ∅, and 6= v1.

5: Do the following substeps:
6: if |πv1 ∩ e| = 1 (note: e is not parallel to the plane πv1 ) then
7: Let πv1 ∩ e = v2, and Vv = Vv ∪ {v2}.
8: else
9: Let e = w1w2 (that is, w1 and w2 are endpoints of edge e).

10: if vwi ∈ E(Sv), for i = 1 and 2 (note: the critical polygon Pv1 is a triangle) then
11: Let Vv = Vv ∪ {w1, w2}.
12: else
13: if v1w1 ∈ E(Sv) and v1w2 /∈ E(Sv) then
14: Find a face 42 ∈ Sv1 such that w2 ∈ V (42), w1w2 /∈ E(42) and there

exists an edge e2 ∈ E(42) such that w2 /∈ e2 and πw2 ∩ e2 6= ∅.
15: Let41 =42, v1 = w2, e = e2, Vv = Vv ∪ {w2}, and go to Step 5.
16: else
17: Find a face 42 ∈ Sv1 such that w1 ∈ V (42), w1w2 /∈ E(42) and there

exists an edge e2 ∈ E(42) such that w1 /∈ e2 and πw1 ∩ e2 6= ∅.
18: Let41 =42, v1 = w1, e = e2, Vv = Vv ∪ {w1}, and go to Step 5.
19: end if
20: end if
21: end if
22: Let42 ∈ Sv be that face which shares edge e with41.
23: if v2 6= v then
24: Let41 =42 and v1 = v2, and go to Step 3.
25: else
26: Output Vv , and Stop.
27: end if
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The main ideas of the following rubberband algorithm (Algorithm 1) are as follows:
For a start, we randomly take a point in the closure of each critical polygon to identify
an initial path from p to q. Then we enter a loop; in each iteration, we optimize point
p1, then p2, . . ., and finally pk. At the end of each iteration, we check the difference
between the length of the current path to that of the previous one; if it is less than ε then
we stop. Otherwise, we go into the next iteration.

Algorithm 1 (a rubberband algorithm)
Input: Two points p and q; set {P •v1 , P

•
v2 , . . . , P

•
vk
}, where Pvi is a critical polygon of

Π; k vertices vi ∈ ∂Pvi
such that pz < v1z

< · · · < vkz
< qz , i = 1, 2, . . ., k, and

there is no any other critical polygon of Π between p and q.
Output: The set of all vertices of an approximate shortest path which starts at p, then
visits (final optimal points) p1, p2, . . ., pk in that order, and finally q.

1: Let ε = 10−10 (the chosen accuracy).
2: for each i ∈ {1, 2, . . . , k} do
3: Randomly take a point pi in P •vi

.
4: end for
5: Compute the length L0 of the path ρ = (p, p1, p2, . . . , pk, q).
6: Let q1 = p and i = 1.
7: while i < k − 1 do
8: Let q3 = pi+1.
9: Compute 3 a point q2 ∈ P •pi

such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ P •pi
}

10: Update ρ by replacing pi by q2.
11: Let q1 = pi and i = i + 1.
12: end while
13: Let q3 = q.
14: Compute q2 ∈ P •pk

such that

de(q1, q2) + de(q3, q2) = min{de(q1, q) + de(q3, q) : q ∈ P •pk
}

15: Update ρ by replacing pk by q2. [Note: Steps 13–15 are analogous to Steps 8–10.]
16: Compute the length L of the updated path ρ = (p, p1, p2, . . . , pk, q).
17: Let δ = L0 − L.
18: if δ > ε then
19: Let L0 = L and go to Step 6.
20: else
21: Stop.
22: end if

The set {P •v1 , P
•
v2 , . . . , P

•
vk
} in Algorithm 1 is called the step set of the rubberband

algorithm. (Identifying a correct step set is normally the main issue when defining a
rubberband algorithm; for example, see [8].)

3 If q1q3 ∩ P ◦pi
6= ∅, then let q2 = q1q3 ∩ P ◦pi

.
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The main ideas of the following Algorithm 2 are as follows: We apply Procedure 1
to compute the step set of a rubberband algorithm as given in Algorithm 1. Then we
simply apply this rubberband algorithm to compute (note: approximately, defined by
the chosen accuracy ε) the ESP.

For the input polyhedron we assume that it is type 2. For example, the Schönhardt
polyhedron as shown in Fig. 2 is type 2, but it might be rotated such that the resulting
polyhedron is not type 2 anymore.

Algorithm 2 (main algorithm)
Input: Two points p and q in Π; sets S and V of faces and vertices of Π , respectively.
Output: The set of all vertices of an approximate shortest path, starting at p and ending
at q, and contained in Π .

1: Compute V ′ = {v : pz < vz < qz ∧ v ∈ V }.
2: Sort V ′ according to the z-coordinate.
3: We obtain V ′ = {v1, v2, . . . , vk′} with v1z ≤ v2z ≤ . . . ≤ vk′z .
4: Partition V ′ into pairwise disjoint subsets V1, V2, . . ., and Vk such that
Vi = {vi1, vi2, . . . , vini

}, with vijy = vij+1y
, for j = 1, 2, . . . , ni − 1, and

vi1y < vi+11y , for i = 1, 2, . . . , k − 1. [That is, this step partitions the set V ′ into
some subsets such that the points in the same subset have an identical y-coordinate.]

5: Let ui = vi1, where i = 1, 2, . . ., k.
6: Let V ′′ = {u1, u2, . . . , uk} (then we have that u1z < u2z < . . . < ukz).
7: for each ui ∈ V ′′ do
8: Apply Procedure 1 for computing Vui (i.e., a sequence of vertices of the critical

polygon Pui ).
9: end for

10: Let Sstep = {P •u1
, P •u2

, . . . , P •uk
}.

11: Let P = {p} ∪ V ′′ ∪ {q}.
12: Apply Algorithm 1 on inputs Sstep and P , for computing the shortest path ρ(p, q)

inside of Π .
13: Convert ρ(p, q) into the standard form of a shortest path by deleting all vertices

which are not on any edge of Π (i.e., delete pi if pi is not on an edge of Pui
).

Theorem 2. The solution obtained by Algorithm 2 is an approximate global solution
to the 3D ESP problem.

Proof. LetX =Πk
i=1P

•
ui

, where P •ui
is as defined in Algorithm 2. Let Y be the set of all

solutions obtained by Algorithm 2. By Lemmas 1 and 2, and Theorem 1, Algorithm 2
defines a continous function, denoted by f , mapping from X to Y depending on the
accuracy ε used in Algorithm 1.

If each P •ui
is degenerated to a single edge, then there exists a unique solution to the

ESP problem; see [5, 13, 15]. Now, let v = (v1, v2, . . . , vk) ∈ Y . Then vi is located on
an edge of polygon Pui

, which is contained in P •ui
\ P ◦ui

(the frontier of P •ui
), where i

= 1, 2, . . ., k; or vi is located in P ◦ui
(inside of polygon Pui

), and vi−1, vi and vi+1 are
colinear. Thus, Y is a finite set.

Now, we prove that Y is a singleton. Otherwise, take v0 ∈ Y , then we have f−1(v0)
⊂ X . For each v ∈ f−1(v0), as f is a continous function, there exists a sufficiently
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small open neighborhood (with respect to the usual topology on X) of v, denoted by
N(v, δv), such that for each v′ ∈ N(v, δv), f(v′) = v0. Thus, N(v, δv) ⊆ f−1(v0) and
∪v∈f−1(v0)N(v, δv) ⊆ f−1(v0).

On the other hand, as f−1(v0) = {v : v ∈ f−1(v0)} and v ∈ N(v, δv), thus we
have f−1(v0) ⊆ ∪v∈f−1(v0)N(v, δv). Therefore, f−1(v0) = ∪v∈f−1(v0)N(v, δv). As
N(v, δv) is an open set, f−1(v0) is an open set as well. Let

f−1(v0) = ∪ki=1Si

where Si is an open subset of P •ui
, i = 1, 2, . . ., k. Recall that f−1(v0) ⊂ X , so there

exists a Si such that ∅ ⊂ Si ⊂ P •ui
.

Without loss of generality, suppose that ∅ ⊂ S1 ⊂ P •u1
. This implies that there exists

a point (x0, y0) ∈ P •u1
such that ∅ ⊂ S1|x0 ⊂ P •u1

|x0 .4 Now, S1|x0 is a nonempty open
subset of P •u1

|x0 . S1|x0 is a union of a countable number of open intervals or half open
intervals (Proposition 5.1.4, [14]).

Thus, there exists a point w1 ∈ P •u1
|x0 \ S1 such that, for each positive ε1, there

exists a point w′1 ∈ N(w1, ε1) ∩ S1 [again, N(w1, ε1) is an open neighborhood with
respect to the usual topology on P •u1

]. Therefore, there exists a point v1 ∈X \ f−1(v0)
such that, for each positive ε1, there exists a point v′1 ∈ N(v1, ε1) ∩ f−1(v0). This
contradicts that f is a continous function on X . Thus, Y is a singleton. ut

4 Time Complexity

Lemma 3. Procedure 1 can be computed in O(|Vv||E(Sv)|+ |S|) time.

Proof. Step 1 can be computed inO(|S|) time. Step 4 can be computed in timeO(|Sv|).
Step 10 can be computed inO(|E(Sv)|) time. Step 13 can be computed in timeO(|E(Sv)|).
Steps 14 and 17 can be computed in time O(|Sv|). Steps 15 and 18 only needs O(|Vv|)
time. It follows that Steps 5–21 can be computed in timeO(|E(Sv)|) because of |Vv| ≤
|Sv| ≤ |E(Sv)|.

Step 22 can be computed in time O(|Sv|). Thus, each iteration (Steps 3–24) can be
computed in time O(|E(Sv)|) because of |Sv| ≤ |E(Sv)|. Step 26 only needs O(|Vv|)
time.

Altogether, Procedure 1 has a time complexity in O(|Vv||E(Sv)|+ |S|). ut

Lemma 4. Algorithm 1 can be computed in κ(ε) · O(
∑k
j=1 |Vvj

|) time.

Proof. Steps 2–5 can be computed in time O(k). By Theorem 1, Steps 6–15 can be
computed in O(|Vvj

|) time, where Vvj
is as in Algorithm 1, for j = 1, 2, . . ., k. Thus,

each iteration of Algorithm 1 can be computed in O(
∑k
j=1 |Vvj

|) time. Therefore, Al-

gorithm 1 can be computed in κ(ε) · O(
∑k
j=1 |Vvj |) time. ut

Theorem 3. Algorithm 2 can be computed in

κ(ε) · O(
k∑
j=1

|Vuj |) +O(
k∑
j=1

|Vuj ||E(Suj )|+ |S|+ |V | log |V |)

where the second term is the time for preprocessing.
4 S|x0 = {(x0, y) : (x, y) ∈ S ∧ x = x0}
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Proof. Step 1 can be computed in O(|V |) time, and Step 2 in O(|V ′|log|V ′|) time.
Steps 4 and 5 can be computed inO(|V ′|) time and Step 6 inO(|V ′′|) =O(k) time. By
Lemma 3, Steps 7–9 require a computation time in O(

∑k
j=1 |Vuj

||E(Suj
)|+ |S|).

Step 10 can be computed in O(|V ′′|) = O(k). By Lemma 4, Step 12 has a time
complexity in κ(ε) ·O(

∑k
j=1 |Vuj

|). Step 13 can be computed inO(
∑k
j=1 |Vuj

|) time.

Therefore, Algorithm 2 can be computed in time κ(ε) · O(
∑k
j=1 |Vuj

|) if excluding to

count the preprocessing time O(
∑k
j=1 |Vuj

||E(Suj
)|+ |S|+ |V | log |V |). ut

Corollary 1. Algorithm 2 can be computed in

κ(ε) · O(M |V |) +O(M |E|+ |S|+ |V | log |V |)

where the second term is the time for preprocessing, and M = max{|Vuj
| : j =

1, 2, . . . , k}.

5 Examples: Three NP-complete or NP-hard Problems

We apply Algorithms 1 and 2 for the approximate solution of hard problems, charac-
terized below as being NP-complete or NP-hard. Let p, q ∈ Π such that pz < qz . Let
Vpq = {v : pz < vz < qz ∧ v ∈ V }, where V is the set of all vertices of Π . For doing
so, we are allowing for input polyhedra different from the bounded type-2 polyhedra so
far, but only input ployhedra which allow to use those algorithms without any further
modification.

We consider unbounded polyheda (which also satisfy the type-2 constraint), and,
thus, generalized critical polygons.

z

5

x

y

-2-4-6-8

p

q

Fig. 3. A path from p to q which does not intersect any of the shown rectangles at an inner point.

Example 1. Let Π be a simply connected polyhedron such that each critical poly-
gon is the complement of an axis-aligned rectangle. Following Section 4, the Euclidean
shortest path between p and q inside of Π can be approximately computed in κ(ε) ·
O(|Vpq|) time. Therefore, the 3D ESP problem can be approximately solved efficiently
in such a special case; see Fig. 4 for experiments up to 550 randomly generated rectan-
gles in 3D space. Finding the exact solution is very hard (NP-complete!) because of the
following
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Fig. 4. Calculation of approximate shortest paths for various sets of stacked rectangles: measured
time for ε = 10−10 versus total number of vertices (Java, run under Matlab 7.0.4, Pentium 4).

Theorem 4. ([11], Theorem 4) It is NP-complete to decide wether there exists an
obstacle-avoiding path of Euclidean length at most L among a set of stacked axis-
aligned rectangles. The problem is (already) NP-complete for the special case that the
axis-aligned rectangles are all q-rectangles of types 1 or 3.

Example 2. Let Π be a simply connected polyhedron such that each critical poly-
gon is the complement of a triangle. Following Section 4, the Euclidean shortest path
between p and q inside of Π can be approximately computed in κ(ε) · O(|Vpq|) time.
Finding the exact solution is very hard (NP-hard!) because of the following

Theorem 5. ([4]) It is NP-hard to decide whether there exists an obstacle-avoiding
path of Euclidean length at most L among a set of stacked triangles.

Example 3. Let S be a stack of k horizontal or vertical strips. The Euclidean shortest
path among S can be approximately computed in κ(ε) · O(k) time. Finding the exact
solution is very hard (NP-complete!) because of the following

Theorem 6. ([11], Theorem 5) It is NP-complete to decide whether there exists an
obstacle-avoiding path of Euclidean length at most L among a finite number of stacked
horizontal and vertical strips.

Example 4. Let S be a stack of k terrain-like axis-parallel rectangles. The Euclidean
shortest path among S can be approximately computed in κ(ε) · O(k) time. The best
known algorithm for finding the exact solution has a time complexity in O(k4) due to

Theorem 7. ([11], Theorem 6) Let S be a stack of k terrain-like axis-parallel rectan-
gles. The Euclidean shortest path among S can be computed in O(k4) time.

6 Conclusions

This paper described an algorithm for solving the 3D ESP problem when the domain
Π is a type-2 simply connected polyhedron; the algorithm has a time complexity in
κ(ε) ·O(M |V |)+O(M |E|+ |S|+ |V | log |V |) (whereO(M |E|+ |S|+ |V | log |V |) is
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the time for preprocessing). It was also shown that the algorithm approximately solves
three NP-complete or NP-hard problems in time κ(ε) · O(k), where k is the number of
layers in the given stack of polygons.

Our algorithm has straightforward applications on ESP problems in 3D imaging
(where proposed solutions depend on geodesics), or when ‘flying’ over a polyhedral
terrain. The best result so far for the latter problem was an O((n/ε)(log n)(log log n))
algorithm for computing a (2(p−1)/p + ε)-approximation to the Lp-shortest path above
a polyhedral terrain.

As there does not exist an algorithm for finding exact solutions to the general 3D
ESP problem (see Theorem 9, [3]), our method defines a new opportunity to find ap-
proximate (and efficient!) solutions to the discussed classical, fundamental, hard and
general problems.
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