
About the Calculation of Upper Bounds
for Cluster Recovery Rates

Fajie Li1 and Reinhard Klette2

1 Institute for Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

2 Computer Science Department, The University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

Abstract. Obtaining a reasonable upper bound of the recovery rate of
an arbitrary clustering algorithm is of importance when exploring clus-
tering algorithms with respect to possible recovery rates. This paper
estimates the best possible recovery rate of an arbitrary clustering algo-
rithm with respect to any given input data set, based on two hypotheses.
For an example of a reasonably complex data set, obtained results are
verified and adjusted using a data visualization system.

Key words: clustering, recovery rate

1 Introduction

This paper uses a definition of recovery rate of clustering algorithms as intro-
duced in [9]. Although there is a vast collection of clustering algorithms proposed
in the literature [6, 8, 10], it seems that there does not exist any article so far
which discusses upper bounds for recovery rate estimations.

Recovery rate estimation is very important, especially when clustering strongly
overlapping data sets with relatively low recovery rates [1]. For example, for
a very strongly overlapping data set, we should ask ourself a very important
question: does there exist a clustering algorithm at all such that it may have
a recovery rate of, say, ≥ 50% with respect to the given input? Obtaining a
reasonable (lowest) upper bound of the recovery rate of an arbitrary cluster-
ing algorithm would help algorithm designers to stop wasting time to explore
clustering algorithms with respect of an actually unreachable recovery rate.

We propose in this paper two hypotheses which the reader will hopefully
accept as being fairly general. Based on those two hypotheses, we then apply
a digital geometry [7] technique to estimate the upper bound of the recovery
rate of any (arbitrary) clustering algorithm. The rest of this paper is organized
as follows: Section 2 gives some mathematical definitions of important notions
such as “overlapping”, used in the rest of the paper. Section 3 describes the
algorithm to approximately estimate the best recovery rate. Section 4 presents
experimental results for a non-trivial input example from [5]. Section 5 concludes
the paper.

2 Fajie Li and Reinhard Klette

Fig. 1. Left: example of a synthetic data set of (partially) very heavily overlapping
clusters: The figure shows a 2D projection of a union of 33 clusters, where each cluster
contains 10,000 3D data points [5]. Right: a typical spiral galaxy (NGC 4414); source:
ESA and NASA.

Figure 1 illustrates an example of simulated data as used in [5], and an image
of a spiral galaxy, being the application background for this synthetic data set.
These simulated astronomical data are available on the public web site [2]. This is
a reasonably complex data set, and we will use it for illustration in this paper. For
example, see Figure 2 for an illustration of two ‘adjacent’ clusters, contributing
to the shown union of all 33 clusters. (We will show that a cluster such as C16

may have a high recovery rate which ranks3 30 out of all 33 clusters). However,
the proposed approach is independent of this example of 33 clusters, used here
for demonstrating purposes only.

2 Definitions

This section defines basic notions used to describe our algorithm in the next
section. In this paper, any mentioned distance refers to Euclidean distance, and
a set is always finite.

Definition 1. Let S be a set of dD data points and p a point in S. The value

min{d(p, q) : q ∈ S\{p}}4

is called the outlier distance (with respect to p and S), denoted by d(p, S\{p});
the value min{d(p, S\{p}) : p ∈ S} (max{d(p, S\{p}) : p ∈ S}) is called the
minimum (maximum) outlier distance of S, denoted by mod(S) (Mod(S)); the
value ∑

p∈S d(p, S\{p})
|S|

3 The ranking is with respect to increasing recovery rate.
4 d(p, q) is the Euclidean distance between p and q.

About the Calculation of Upper Bounds for Cluster Recovery Rates 3

Fig. 2. Cluster C16 (red) of this data set with a unique ‘adjacent’ cluster (green). We
will see that for this example, the upper bound of the recoverable quantity of C16

equals 8,081, and this is rank 30 of all 33 clusters.

is called the averaged outlier distance of S, denoted by aod(S).

Fig. 3. Illustration of outlier distance.

It follows that mod(S), Mod(S) and aod(S) are positive real numbers (not
necessarily integers!). For example, let S be the set of grid vertices of a finite
unit grid G, and p an arbitrary grid vertex of G; then, the outlier distance (with
respect to p and S) is equal to the grid constant 1 of G. Obviously, in this case
we have that mod(S) = Mod(S) = aod(S) = 1.

Definition 2. Let S1 and S2 be two sets of dD data points. Let d(S1, S2) =
min{d(p, q) : p ∈ S1 ∧ q ∈ S2}. If aod(S1) < d(S1, S2), then we say that S1 does
not interfere with S2; otherwise S1 does interfere with S2

In Figure 4, let S1 and S2 be the vertices of the small and big squares,
respectively; aod(Si) = di, where i = 1, 2; and d(S1, S2) = d3.

Figure 4 (left) shows a case with d2 > d1 > d3. By Definition 2, S1 interferes
with S2, and S2 interferes with S1 as well.

4 Fajie Li and Reinhard Klette

Fig. 4. Illustration of “does interfere with” and “does not interfere with”.

Figure 4 (middle) shows a case of d1 < d3. By Definition 2, S1 does not
interfere with S2. Also assuming d2 > d3, by Definition 2 it follows that S2

interferes with S1. Therefore, interfering and non-interfering may occur in a
non-symmetrical way.

Figure 2 shows that for the given example of simulated astronomical data,
interfering and non-interfering may occur in a non-symmetrical way. This is
because distribution and density of the two clusters may differ.

Figure 4 (right) shows a case with d1 < d2 < d3. By Definition 2, S1 does
not interfere with S2, and S2 does not interfere with S1 as well.

In this paper, “interfering” and “overlapping” is interchangeable.

Definition 3. Let C1 and C2 be two (different) old clusters of dD data points.
If C1 interferes with C2, then C2 is adjacent to C1.

Since the relations of “interferes with” and “does not interfere with” are
not symmetrical in general, this adjacency relation is also not symmetrical in
general.

Definition 4. Let d0 ∈ R1. The subset {p : d(p, S\p) ≤ d0 ∧p ∈ S} is called the
subset of S induced by d0, denoted by S(d0). We denote S(d0) by Saod if d0 =
aod(S).

It follows that S(d0) = ∅ if d0 < mod(S), and S(d0) = S if d0 ≥Mod(S).

Example 1. Let S = { (16, 135), (195, 100), (213, 72), (225, 90), (239, 142),
(250, 59), (256, 105), (266, 85), (290, 159), (293, 126), (293, 102), (299, 80),
(309, 82), (328, 103), (333, 136), (352, 107), (377, 104) }, and p = (16, 135); see
Figure 5.

By above definitions, we have that d(p, S\{p}) = 182.3897 = d(p, (195, 100)),
mod(S) = 10.1980, Mod(S) = 182.3897, aod(S) = 34.1648, and Saod=
{ (195, 100), (213, 72), (225, 90), (250, 59), (256, 105), (266, 85), (290, 159),
(293, 126), (293, 102), (299, 80), (309, 82), (328, 103), (333, 136), (352, 107),
(377, 104) }. It follows that S\{S(aod(S))} = {(16, 135), (239, 142)}.

Let S1 and S2 be two sets of dD data points. If there exists a subset Sm of
S1(aod(S1)) such that S1(aod(S1))\Sm does not interfere with S2, and |Sm| is
minimal, then |S1|−|Sm| is called the maximized recoverable quantity of S1 with
respect to S2.

About the Calculation of Upper Bounds for Cluster Recovery Rates 5

Fig. 5. Illustration of the values computed in Example 1. Left: S, Mod(S) and mod(S);
Right: Saod.

3 The Algorithm

This section describes an algorithm to estimate the upper bound of the recovery
rate of an arbitrary clustering algorithm based on the idea of digital geometry.
In the rest of the paper, any set to be clustered is a set of 3D data points.

3.1 Insert 3D Data Points into Cubes

The following Procedure 1 and its two slightly modified versions (Procedures 2
and 3) are later used in the main procedure (Procedure 4) of this subsection.
The basic idea is to partition the set of given data points by insertion into a
number of cubes. Assume that all cubes are of equal size and partitioning R3

into a uniform orthogonal grid. Each cube is identified with the coordinates of
its centroid (see the grid-cube model in 3D digital geometry [7]).

A layer (of cubes) is a set of cubes such that one coordinate (x, y or z) is
constant for each cube in the set. A strip (of cubes) is a set of cubes such that
two coordinates (x and y, x and z, or y and z) are constant for all cubes in the
set.

Procedure 1 Insert 3D Data Points into Layers

Input: An 1D array of 3D data points, denoted by P .
Output: A number of layers containing these input data points.

1. Let θ be the grid constant, n the length of P , and P [i].x the x-coordinate
of point P [i], where i = 0, 1, 2, . . ., n− 1.

2. Sort input data points in P by x-coordinate.
3. For each i ∈ {0, 1, 2, . . . , n− 1} do the following:
3.1. Let j be the integer part of the real number

P [i].x− P [0].x
θ

3.2. Insert P [i] into a set Sj.
4. Output all Sjs.

6 Fajie Li and Reinhard Klette

The following two procedures are also fairly simple (they do as specified in
their headers), and not given here for that reason:

Procedure 2 Insert 3D Data Points (all in one Layer) into Strips

Procedure 3 Insert 3D Data Points (all in one Strip) into Cubes

Now we consider cube objects; a cube object is defined by its center and a
grid constant. Thus, we allow variable grid constants here rather than having
one universally fixed for all R3.

Procedure 4 Insert 3D Data Points into Cube Objects5

Input: An 1D array P of 3D data points.
Output: A set CO of cube objects containing the input data points.

1. Let CO = ∅.
2. Sort input data points by x-coordinate.
3. Calculate the number of layers used along the x-axis, denoted by nl, which

is the integer part of the real number

P [n− 1].x− P [0].x
θ

+ 1

4. Apply Procedure 1 to insert the input data points into layers Lj, where j
= 0, 1, 2, . . ., nl - 1.

5. For each j ∈ {0, 1, 2, . . . , nl − 1} do the following:
5.1. Sort the data points in Lj by y-coordinate.
5.2. Calculate the number of strips used along the y-axis, denoted by nsy,

which is the integer part of the real number

Pj [nj − 1].y − Pj [0].y
θ

+ 1

5.3. Apply Procedure 2 to insert the data points from one layer into strips
Sj, where j = 0, 1, 2, . . ., nsy - 1.

5.4. For each k ∈ {0, 1, 2, . . . , nsy − 1} do the following:
5.4.1. Sort the data points in Sj by z-coordinate.
5.4.2. Calculate the number of cubes used along the z-axis, denoted by ncz,

which is the integer part of the real number

Pjk
[njk
− 1].z − Pjk

[0].z
θ

+ 1

5.4.3. Apply Procedure 3 to insert the data points from one strip into cubes
Cj, where j = 0, 1, 2, . . ., ncz - 1.

5.4.4. For each l ∈ {0, 1, 2, . . . , ncz − 1} do the following:

5 A cube object often contains more information than a cube does.

About the Calculation of Upper Bounds for Cluster Recovery Rates 7

5.4.4.1. Compute the center of cube Cjkl
, denoted by (xjkl

, yjkl
, zjkl

), as fol-
lows:

xjkl
= P [0].x+ θ ∗ (j + 1)− 0.5 ∗ θ

yjkl
= P0[0].y + θ ∗ (k + 1)− 0.5 ∗ θ

zjkl
= P00 [0].z + θ ∗ (l + 1)− 0.5 ∗ θ

5.4.4.2. Create a cube object COjkl
such that its center is (xjkl

, yjkl
, zjkl

) for
grid constant is θ.

5.4.4.3. Move all data points from Cjkl
into COjkl

.
5.4.4.4. Insert COjkl

into the set CO.
6. Output CO.

Procedure 4 is frequently called in the main procedure (Procedure 6, see
below) of our clustering algorithm.

3.2 Estimation of the Best Recovery Rate

The following simple procedure (Procedure 5) deletes a subset of data points,
contained in a second set, from the first set of data points, using the digital-
cubes method. The purpose is that the resulting subset of the first set will not
interfere (anymore) with the second set. This procedure is frequently called in
the next procedure (Procedure 6).

Procedure 5 Approximate Set Difference

Input: Two sets of cubes, C1 and C2, and grid constant θ.
Output: A subset of C1, denoted by C ′1 such that for every c1 ∈ C ′1 and c2 ∈

C2, we have that d(c1, c2) >
√

2θ

1. Let C ′1 = ∅.
2. For each c1 ∈ C1, if d(c1, C2) >

√
2θ, then C ′1 = C ′1 ∪ {c1}.

3. Output C ′1.

In the following, we make use of the following

Hypothesis 1 In Procedure 5, the cardinality of C ′1 is a decreasing function of
the grid constant θ.

We have to state this as a hypothesis (and not as a lemma) because it is true
only approximately. We will discuss this issue in Section 4.

The following Procedure 6 is the main procedure when dealing with two sets
of 3D data points. It is based on Hypothesis 1 and uses binary search to find the
best grid constant in order to compute an approximately maximized recoverable
quantity. Threshold T1 (T2) is used to decide when to terminate the procedure

8 Fajie Li and Reinhard Klette

(i.e., when a change in the size of the grid constant (for a subset of data points)
is already relatively small).

For the example of input data, illustrated in Figure 1, the cardinality of each
cluster equals 10,000. For such a size we would use T2 = 10 in the following
Procedure 6.

Procedure 5 is used to search in the interval (0, aod(S1)] for the optimum
grid constant. Accordingly, in Procedure 6 below, we use parameter values a =
0, b = 2, and T1 = 0.1.

Procedure 6 Approximate Maximized Recoverable Quantity

Input: Two sets of 3D data points, S1 and S2, an interval [a, b], and two
thresholds T1 and T2 used to terminate the procedure.

Output: An approximate maximized recoverable quantity (i.e., subset) of S1

with respect to S2.

1. Let a = 0, b = 2, T1 = 0.1, T2 = 10, and compute aod(S1). Let flag =
true.

2. While (flag = true), do the following:
2.1. Let grid constant θ = aod(S1)× (a+ b)/2.
2.2. Compute S1(aod(S1)).
2.3. Let S1(aod(S1)) be the input for Procedure 4; compute a set of cubes

containing data points in S1(aod(S1)), denoted by S′1.
2.4. Let S2 be the input for Procedure 4; compute a set of cubes containing

data points in S2, denoted by S′2.
2.5. Let S′1, S′2, and θ be the input for Procedure 5; compute a subset of S′1,

denoted by S′′1 .
2.6. Let d = d(S′′1 , S2).
2.7. If aod(S′′1) < d, then b = (a+ b)/2. Otherwise a = (a+ b)/2.
2.8. If (b − a) < T1 or (|S1| − |S′′1 |) < T2, then flag = false (i.e., break the

while loop).
3. Output |S′′1 |.

Set S′′1 in Step 3 is called the decided subset of S1. S1\S′′1 is called the
undecided subset of S1.

Let C0, C1, . . ., Cn−1 be n old clusters, where n ≥ 2. For each i ∈ {0, 1, 2, . . . , n−
1}; the maximized recoverable quantity of Ci with respect to the union of adja-
cent clusters equals irq; and in is the total number of adjacent clusters.

Hypothesis 2 We assume that the largest cardinality of a recoverable subset of
old cluster Ci, calculated by a most powerful clustering algorithm (known until
now, or to be designed by someone in the future) equals

irq +
|Ci| − irq

in
× 0.5

if in 6= 0, or equals |Ci| otherwise.

About the Calculation of Upper Bounds for Cluster Recovery Rates 9

In Hypothesis 2, we assume that a most powerful clustering algorithm can
recover the whole old cluster if it is not adjacent to any other old cluster. Possibly
this seems like that we overestimate the ability of the most powerful clustering
algorithm. However, this is fine to estimate an upper bound for the recovery
rate of any clustering algorithm. Analogously, assume that the most powerful
clustering algorithm can recover the whole decided subset of size irq, for each
old cluster. Obviously, in the case of an input data set with strongly overlapping
(i.e., with “heavy interference” between) old clusters, the recovery rate decreases
if the number of old clusters increases. Thus, for the complement of the decided
subset (i.e., the undecided subset, with size |Ci| − irq), the recoverable quantity
is divided by the number in of adjacent clusters. The term 0.5 is based upon
the consideration that there is a 50% opportunity for each data point in the
undecided subset to be recovered. Such a hypothesis is straightforward if in = 1.

By Hypothesis 2 and Procedure 6, we have the following main algorithm:

Algorithm 1 Estimation of the Best Possible Recovery Rate

Input: n old clusters of 3D data points C0, C1, . . ., Cn−1.
Output: An approximate upper bound of recovery rates of a clustering algo-

rithm with respect to ∪n−1
i=0 Ci as an input.

1. Let ubrr = 0 (an initialization of the upper bound of recovery rates).
2. For each i ∈ {0, 1, 2, . . . , n− 1}, do the following:
2.1. Let in = 0 (initialize the number of adjacent clusters) and Siu

= ∅
(initialize the union of adjacent clusters).

2.2. Compute aod(Ci).
2.3. For each j ∈ {0, 1, 2, . . . , n− 1} \ {i}, do the following:
2.3.1. Compute d(Ci, Cj).
2.3.2. If aod(Ci) ≥ d(Ci, Cj), then in = in + 1 and Siu

= Siu
∪ Cj.

3. For each i ∈ {0, 1, 2, . . . , n− 1} do the following:
3.1. Let Ci and Siu

as an input, apply Procedure 6 to compute an approximate
maximized recoverable quantity of Ci with respect to Siu

, denoted by imrq.
3.2. If in 6= 0, then (by Hypothesis 2),

ubrr = ubrr + imrq +
|Ci| − imrq

in
× 0.5

Otherwise, ubrr = ubrr + |Ci|.
4. Output ubrr × 100%.

The next section contains some intermediate and final results when running
Algorithm 1 on a non-trivial input data set.

4 Experimental Results

We use the (simulated) input data set from [2] which consists of 33 old clusters.

10 Fajie Li and Reinhard Klette

i aod(Ci) i aod(Ci) i aod(Ci) i aod(Ci) i aod(Ci)

0 56.28 7 81.37 14 62.92 21 61.83 28 93.45

1 43.38 8 66.82 15 83.53 22 46.87 29 77.16

2 90.23 9 74.99 16 37.37 23 49.48 30 71.19

3 106.92 10 20.95 17 32.90 24 59.64 31 74.70

4 97.52 11 110.16 18 107.16 25 77.01 32 62.06

5 38.94 12 78.25 19 94.86 26 40.01

6 55.16 13 68.10 20 115.19 27 103.95

Table 1. Averaged outlier distances in old clusters of the used input data set.

4.1 The Test Data Set

There are 10,000 3D data points in each cluster (which is stored in a text file
named “en angmom f 000.i”, where i = 00, 01, 02, . . ., 09, 10, . . ., 32). The union
of all 33 clusters is shown in Figure 1.

Input data used in experiments always refer to this data set, but after the
following normalization (just for scale reduction): For each point p = (x, y, z) in
the data set, replace p by (x/20, y/11, z/11).

4.2 Some Results

Table 1 shows the averaged outlier distance of each cluster Ci, where i = 0, 1,
2, . . ., 32. It can be computed just by applying Definition 1.

Table 2 shows cardinalities of subsets of Cis induced by the corresponding
averaged outlier distances aod(Ci), for i = 0, 1, 2, . . ., 32. Those can be computed
straightforwardly, just by applying Definition 4.

We see that those induced subsets contain between 57% and 63% data points
of the old clusters. This means that, when considering the question of how to
select a reasonable d value for creating a meaningful induced subset, the averaged
outlier distance appears to be a good option for the given input data. Again,
although we may replace aod(S1) in Step 2.2 in Procedure 6 by another value
d1 ∈ (aod(S1),Mod(S1)] (to increase |Cid1

|, and, in consequence, to increase
the recoverable quantities irqs as stated in Hypothesis 2), we have to replace

i |Ciaod | i |Ciaod | i |Ciaod | i |Ciaod | i |Ciaod |
0 6305 7 6113 14 5931 21 6277 28 6211

1 6285 8 5766 15 5921 22 6703 29 5849

2 6712 9 5860 16 6162 23 6305 30 5716

3 5786 10 6057 17 5836 24 6362 31 6279

4 5913 11 5744 18 6153 25 6080 32 6141

5 6333 12 5827 19 5908 26 6573

6 6173 13 6721 20 5872 27 5894

Table 2. Cardinalities of subsets of Cis induced by the corresponding averaged outlier
distance aod(Ci)s of the input data.

About the Calculation of Upper Bounds for Cluster Recovery Rates 11

Fig. 6. Cluster C3 with the union of 6 adjacent clusters. The upper bound of the
recoverable points in C3 equals 2269 (rank 11 of all 33 clusters). The experiment verified
that such an upper bound seems to be a reasonable estimate.

aod(S1) in Definition 2 by d1 as well. Therefore, sets S1 and S2 in Definition 2
are overlapping “more easily”; thus we increase the value in in Hypothesis 2.
Conversely, we replace aod(S1) in Step 2.2 in Procedure 6 by a smaller value
which will decrease both irq and in in Hypothesis 2.

We applied GGobi [4] to study each cluster, together with the union of its
adjacent clusters. We colored each cluster red and the union of its neighbors
green. Then we rotated them in 3D such that we can view a maximum number
of red data points, and capture an image for each cluster and its adjacent clusters.
We call the resulting images good images which approximately coincide with the
upper bounds of recoverable quantities. See Figures 6 and 7 for two examples.

By such good images we evaluated reasonable estimates for the upper bound
of the recoverable size of each of those old clusters. See Figure 2, for example.

Fig. 7. C29 with the union of 3 adjacent clusters. The upper bound of the recoverable
points of C29 equals 2761 (rank 12 of all 33 clusters). The experiment verified that such
an upper bound seems to be a reasonable estimate.

12 Fajie Li and Reinhard Klette

By Definition 3, C30 (i.e., old cluster 30) does not have any adjacent cluster
(see also Table 3). So we do not have to capture a good image for C30. See the
Appendix for the remaining 31 good images.

For the example of data in [2], the approximate upper bound of recovery
rates, for any clustering algorithm, is adjusted to

39.68% + 166000/330000× 100% = 44.71%

Obviously, the provided method applies to any other clustering data set as well,
and the limitation to points in 3D space is not crucial.

5 Conclusion

We summarize that this paper has estimated the best recovery rate of any (arbi-
trary) clustering algorithms with respect to any given input data set. Using the
data visualization system GGobi we were also able to show that such estimates
are approximately correct for the used (reasonably complex) example of a data
set.

6 Acknowledgement

This research is part of the project “Astrovis”, research program STARE (STAR
E-Science), funded by the Dutch National Science Foundation (NWO), project
no. 643.200.501. The first author thanks project members for valuable comments
on an earlier manuscript of this paper.

References

1. A. B-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support Vector Clustering.
Journal of Machine Learning Research, 2:125–137, 2001.

2. Simulated astronomical data.
See http://www.astro.rug.nl/ ahelmi/simulations gaia.tar.gz

3. E. George, F. Carlos S., W. Simon D. M., and D. Marc. Gravitational clustering
from scale-free initial conditions. Monthly Notices RAS 235, 715–748, Dec, 1988.

4. GGobi data visualization system. See http://www.ggobi.org/
5. A. Helmi and P. T. de Zeeuw. Mapping the substructure in the Galactic halo with

the next generation of astrometric satellites. Astron. Soc., 319:657–665, 2000.
6. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Com-

puting Surveys, 31(3):264–323, September 1999.
7. R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, San Francisco,

2004.
8. H. C. Law. Clustering, Dimensionality Reduction, and Side Information. Ph.D.

Thesis, Michigan State University, the United States, 2006.
9. F. Li and R. Klette. Recovery Rate of Clustering Algorithms. Technical Report

CITR-TR-223, Computer Science Department, The University of Auckland, Auck-
land, New Zealand, 2008 (www.citr.auckland.ac.nz).

10. B.W. Silverman. Density Estimation. Chapman & Hall, London, 1986.

