
Recovery Rate of Clustering Algorithms

Fajie Li1 and Reinhard Klette2

1 Institute for Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

2 Computer Science Department, The University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

Abstract. This article provides a simple and general way for defining
the recovery rate of clustering algorithms using a given family of old
clusters for evaluating the performance of the algorithm when calculating
a family of new clusters.

Under the assumption of dealing with simulated data (i.e., known old
clusters), the recovery rate is calculated using one proposed exact (but
slow) algorithm, or one proposed approximate algorithm (with feasible
run time).

1 Introduction

Clustering has many applications in image or video analysis, such as segmen-
tation (e.g., see [14]), learning (e.g, see [23]), bags-of-features representations of
images (e.g., see [5]), or video retrieval (e.g., see [20]) - just to cite (by random
selection) four examples within a large diversity of clustering applications in this
area.

In general, there are hundreds of clustering algorithms proposed in the liter-
ature, often applicable in a wide diversity of areas such as computer networks,
data mining, image or video analysis, and so forth. For estimating the total num-
ber of clustering algorithms, see page 5 in [13], page 13 in [17] or page 130 in [22].
This all illustrates that clustering problems are very important, and often also
difficult to solve. Clustering describes unsupervised learning in its most general
form.

Clustering not only interests computing scientists but also, for example, as-
tronomers [9, 11, 15]: Given is an observed set of stars (considered to be a set of
points); how to find (recover) clusters which are the contributing galaxies to the
observed union of those clusters? White dwarfs and red giants were one of the
great discoveries in astronomy [12].

This paper focuses on a general evaluation of clustering algorithms. Previous
methods, such as [1, 3, 4, 6, 8, 18, 25], all restrict on evaluating a very small subset
of clustering algorithms, while the approaches of [2] (Section 7.2.2, pages 221–
222) and [21] are more complicated. Since there is a huge number of clustering
algorithms, it is very important to design a simple evaluation method in order to
choose a suitable clustering algorithm for a given data set. This paper proposes

2 Fajie Li and Reinhard Klette

a sound, general and simple method to evaluate the performance of an arbitrary
clustering algorithm.

For example, if a given image segmentation task may be described by simu-
lated data, then the provided method can be used for comparing various clus-
tering techniques designed for solving this image segmentation task.

The rest of this paper is organized as follows: Section 2 gives our definition
of recovery rate. Section 3 describes algorithms for computing recovery rate of a
clustering algorithm with respect to simulated input data. Section 4 gives some
examples to illustrate the computation of recovery rate. Section 5 shows the
experimental results. Section 6 concludes the paper.

2 Definitions

A definition of recovery rate is needed for having a sound measure when com-
paring clustering techniques.

Let d, n, and ni be positive integers, for i = 1, 2, . . . , n. Let xij ∈ Rd, where
i = 1, 2, . . . , n (the index of a cluster) and j = 1, 2, . . . , ni (the subindex of a
point in cluster i which contains ni points). xij

is called a dD data point.3

Let Ci = {xij : j = 1, 2, . . . , ni}, for i = 1, 2, . . . , n. Ci is called a cluster
of dD data points. Each cluster Ci is uniquely identified by its cluster ID. Here
we simply take index i to be the cluster ID of cluster Ci. Clusters are always
assumed to be pairwise disjoint. (We do not address fuzzy clustering in this
paper.)

Definition 1. A clustering algorithm, denoted by A, is an algorithm which
maps a finite set of points of Rd into a family of clusters.

We consider the case where the union

C = ∪n
i=1Ci, with N = card C,

of the given family of old clusters defines the input of a clustering algorithm,
without having any further information about points in this set, such as their
cluster ID. The output is a partition of this union C into a finite number of new
clusters Gk, where k = 1, 2, . . . ,m:

∪m
k=1Gk = C

A new cluster Gk may contain data points from different old clusters, and
we partition Gk into subsets based on the cluster ID of the old clusters:

Gk = ∪sk
tk=1Gktk

where Gktk
is a subset of an old cluster, for tk = 1, 2, . . . , sk.

3 We prefer to write xij rather than xij , for indicating that j is a subindex in the
cluster identified by index i.

Recovery Rate of Clustering Algorithms 3

Obviously, indices i and k are in some permutation (old cluster Ci is not
necessarily ‘more related’ to new cluster Gi than to any other new cluster Gk),
and we may even have that n 6= m.

For defining the recovery rate, we assume that each old cluster can only be
represented by one new cluster, defining a mapping i→ k, and for this k we then
have the defined subset Gkik

which should have maximum cardinality compared
to all the other Gktk

of new cluster Gk. However, for defining the recovery rate
we have to detect the maximum of all possible global mappings i → k; just a
value for one particular i will not do.

Definition 2. Assume that G1t′1
, G2t′2

, . . ., Gmt′m
satisfy

(i) For i, j ∈ {1t′1
, 2t′2

, . . . ,mt′m}, there exist two old clusters Ci and Cj such
that Git′

i
⊆ Ci and Gjt′

j
⊆ Cj; and

(ii)
∑m

k=1

cardGk
t′
k

cardCk
= max{

∑m
k=1

cardGktk

cardCk
: tk = 1, 2, . . . , sk}

The value ∑m
k=1

cardGk
t′
k

cardCk

m
× 100%

is called the recovery rate of the clustering algorithm A with respect to the input
∪n

i=1Ci.

Definition 2 assumes that we have m ≤ n; the number of new clusters is
upper bounded by the the number of old ones. We do not consider this as a
crucial restriction of generality.

It is obvious that if all cardCi are identical, where i = 1, 2, . . . , n, then item
(ii) in Definition 2 can be simplified as follows:

m∑
k=1

cardGkt′
k

= max{
m∑

k=1

cardGktk
: tk = 1, 2, . . . , sk}

And the recovery rate of the clustering algorithm with respect to the input is
the value below: ∑m

k=1 cardGkt′
k∑n

i=1 cardCi
× 100%

Obviously, there can be further options of defining a recovery rate, for exam-
ple by enforcing m = n and always comparing Gi with Ci, but we consider the
above definition as the least restrictive. We only mention one more option here
for (possibly) defining a recovery rate:

Definition 3. Assume that G1t1
, G2t2

, . . ., Gmtm
satisfy

4 Fajie Li and Reinhard Klette

(i) For i, j ∈ {1t1 , 2t2 , . . . ,mtm
}, there exist two old clusters Ci and Cj such

that Giti
⊆ Ci and Gjtj

⊆ Cj;
(ii) Giti

6= ∅, where i ∈ {1, 2, . . . ,m}; and
(iii) m is maximal.

The value
m

n
× 100%

is called the pseudo recovery rate of the clustering algorithm A with respect to
the input ∪n

i=1Ci.

Our definitions are very intuitive (and certainly easy to understand). Our
method does not need to introduce other functions such as an F -function as in
[16], or entropy as in [2] or [4].

In the next section we will illustrate that the pseudo recovery rate is actually
not a reasonable choice, and we will then only apply recovery rate as defined in
Definition 2 afterwards.

3 Algorithms

This section assumes simulated data, such that both the old and new clusters
are known.

We propose two different algorithms and discuss their properties afterwards,
also for the purpose of comparing both with one-another. The first algorithm is
straightforward, but computationally expensive:

Algorithm 1: Exact Recovery Rate

Input: Old clusters Ci, where i = 1, 2, . . ., n; and new clusters Gj , where j = 1,
2, . . ., m, obtained from a clustering algorithm A.

Output: The recovery rate of A with respect to Ci, where i = 1, 2, . . ., n.

1. Let M be an m× n matrix, initially with zeros in all of its elements.
2. For each j ∈ {1, 2, . . . ,m} and for each x ∈ Gj , if there exists an i ∈

{1, 2, . . . , n} such that x ∈ Ci, then update M as follows: M(j, i) = M(j, i) +
1, where M(j, i) is the (j, i)-th entry of M .

3. Find m different integers (i.e., column indices) ik ∈ {1, 2, . . . , n} such that

m∑
k=1

M(k, ik)
cardCik

= max{
m∑

j=1

M(j, ij)
cardCij

: ij ∈ {1, 2, . . . , n}}

4. Output the recovery rate as being the value∑m
k=1

M(k,ik)
cardCik

m
× 100%

Recovery Rate of Clustering Algorithms 5

The main computations of Algorithm 1 occur in Step 3, and its time com-
plexity (note: m ≤ n) equals

O(n(n− 1) · · · (n−m + 2)(n−m + 1)) ≥ O(m!) ≥ O(2m)

Obviously, this exponential time algorithm calculates the correct recovery rate.
The following is only an approximate algorithm for computing the recovery

rate, but with feasible running time.

Algorithm 2: Approximate Recovery Rate

Input and Steps 1 and 2 are the same as in Algorithm 1.

Output: The approximate recovery rate of A with respect to Ci, where i =
1, 2, . . ., n.

3.0. For each entry M(i, j) of M , let M(i, j) = M(i,j)
cardCj

, where i = 1, 2, . . .,
m; j = 1, 2, . . ., n.

3.1. For each j ∈ {1, 2, . . . ,m}, find the maximum entry of M , denoted by
mj = M(i, k).

3.2. Update M by removing the i-th row and k-th column of M and go to
Step 3.1.

4. Output the approximate recovery rate as the value∑m
j=1 mj

m
× 100%

It follows that the approximate recovery rate, obtained from Algorithm 2, is
less than or equal to the exact recovery rate obtained from Algorithm 1. The
time complexity of Algorithm 2 is in O(mn).

Both of our algorithms are very simple to implement. We only use a single
matrix, while [2] uses several matrices.

4 Examples

The first two examples are on purpose easy to follow such that the reader may
follow the proposed definitions and algorithms. Let

C1 = {(1, 5, 5), (5, 9, 3), (6, 9, 6), (7, 6, 4), (9, 6, 0)}

and
C2 = {(7, 14, 13), (10, 15, 12), (14, 16, 7), (15, 7, 16), (16, 7, 12)}

6 Fajie Li and Reinhard Klette

be two clusters of 3D data points (see Figure 1, left).

C1 ∪ C2 = {(1, 5, 5), (5, 9, 3), (6, 9, 6), (7, 6, 4), (7, 14, 13), (9, 6, 0), (10, 15, 12),
(14, 16, 7), (15, 7, 16), (16, 7, 12)}

is the union of C1 and C2 (see Figure 1, middle).

Fig. 1. Left: red points belong to C1; green points belong to C2. middle: the union of
C1 and C2. right: red points belong to G1; green points belong to G2.

Let A be the algorithm for clustering data in MATLABTM , called cluster-
data. The obtained output is G1 = { (5, 9, 3), (7, 6, 4), (6, 9, 6), (9, 6, 0), (1, 5, 5),
(10, 15, 12), (14, 16, 7), (7, 14, 13) }, and G2 = {(15, 7, 16), (16, 7, 12)} (see Fig-
ure 1, right).

Let G1 = G11∪G12 , where G11 = {(5, 9, 3), (7, 6, 4), (6, 9, 6), (9, 6, 0), (1, 5, 5)},
G12 = {(10, 15, 12), (14, 16, 7), (7, 14, 13), }; G1 = G21 , where G21 = {(15, 7, 16),
(16, 7, 12)}.

Example 1. By Algorithm 1, we have that

M =
(

5 3
0 2

)
In Step 3 of Algorithm 1, there are only two cases to select different column

indices: i1 = 1 and i2 = 2 or i1 = 2 and i2 = 1. Thus, the recovery rate of A
with respect to C1 ∪ C2 is equal to

(M(1, 1) + M(2, 2))/|G1 ∪G2| × 100% = (5 + 2)/10× 100% = 70%

Example 2. By Algorithm 2, we have the same matrix M as in Algorithm 1. We
obtain that m1 = 5 and m2 = 2 in Step 3 of Algorithm 2. Thus, the approximate
recovery rate of A with respect to C1 ∪ C2 is equal to

(m1 + m2)/|G1 ∪G2| × 100% = (5 + 2)/10× 100% = 70%

So far about these simple two examples, where both algorithms actually
produce the same result (i.e., recovery rate). The next two examples show that
Algorithms 1 and 2 could produce different results.

Recovery Rate of Clustering Algorithms 7

Fig. 2. Some data points in cluster 0 (which is stored in the text file
en angmom f 000.00 [7]).

We combine an adaptive mean shift based clustering algorithm (see [10])
with traditional clustering algorithm kmeans (another clustering algorithm in
MATLAB) to obtain a variant of mean shift based clustering algorithm, denoted
by K.

We illustrate problems of clustering (for easier illustration) in the following
two examples for a simulation of astronomical data (publicly available on [7])
rather than for some examples of image or video data. Clusters in those astro-
nomical data (further illustrated in Section 5) are characterized by being highly
overlapping. Obviously, the recovery of highly overlapping data is difficult, if not
even (nearly) impossible. Even currently published cluster algorithms (see, for
example, [24]) work neither efficiently nor correctly.

There are 10,000 3D data points in each cluster (which is stored in a text
file named “en angmom f 000.i”, where i = 00, 01, 02, 04, and 05). For ex-
ample, Figure 2 shows the first 20 data points in cluster 0 (i.e., in the file
en angmom f 000.00).

The union of these five old clusters is shown in Figure 3.

Example 3. By Algorithm 1, we have that

M =

1612 0 24 2009 0

0 0 21 0 4540
0 0 4153 2 5460
0 10000 5796 7989 0

8388 0 6 0 0

8 Fajie Li and Reinhard Klette

Fig. 3. An example of an overlapping data set: This shows a 2D projection of a union
of 5 clusters, where each cluster contains 10,000 3D data points [11].

Thus, the recovery rate of K with respect to the input data shown in Figure 3
is equal to

(M(1, 4) + M(2, 5) + M(3, 3) + M(4, 2) + M(5, 1))/5 ∗ 10000× 100%

= (2009 + 4540 + 4153 + 10000 + 8388)/50000× 100% = 58.18%

Example 4. By Algorithm 2, we have the same matrix M as in the previous
example. Thus, the approximate recovery rate of K with respect to the input
data shown in Figure 3 is equal to

(M(4, 2) + M(5, 1) + M(3, 5) + M(1, 4) + M(2, 3))/5 ∗ 10000× 100%

= (10000 + 8388 + 5460 + 2009 + 21)/50000× 100% = 51.76%

Examples 1 to 4 illustrate that Algorithms 1 and 2 may lead to different
results with respect to the recovery rate (as in Definition 2). Another difference
in evaluations, using either Algorithm 1 or 2, is that Algorithm 1 produces the
exact recovery rate but it has time complexityO(2m) while Algorithm 2 produces
an approximate recovery rate but it has the time complexity O(mn).

The definition of recovery rate allows us to measure the ability of a clustering
algorithm with respect to given input data. It also allows us to compare the
performance of two different clustering algorithms. For example, it is simple to
compute the recovery rate of kmeans with respect to C1∪C2 in Examples 1 and
2, and it equals 100%. So we may say that kmeans is better than clusterdata for
this input.

Recovery Rate of Clustering Algorithms 9

Finally, we illustrate the failure of pseudo recovery rate to provide a proper
value.

Example 5. Since G11 6= ∅ and G21 6= ∅, by Definition 3, the pseudo recovery
rate of A with respect to C1 ∪ C2 is equal to

2
2
× 100% = 100%

Example 5 illustrates the flaw when using the defined pseudo recovery rate
to evaluate the performance of clustering algorithms: Even though the pseudo
recovery rate is 100%, it does not mean that all the old clusters have been recov-
ered completely. In particular, the use of pseudo recovery rate will exaggerate
claims when the cardinalities of old clusters are very large, such as (typically) in
the case of clustering a union of a number of galaxies in astronomy.

Altogether, this should be sufficient to illustrate our point of view that clus-
tering results need to be evaluated with respect to any possible mapping of all
the generated m new clusters into the set of all available n old clusters.

5 Experimental Results

We combine an adaptive mean shift based clustering algorithm (see [10]) with
traditional clustering algorithm kmeans (or clusterdata) to obtain a variant of
mean shift based clustering algorithm, denoted by K (or C). We continue with
the astronomical data as used in Examples 3 and 4.

Fig. 4. An example of a very heavily overlapping data set: This shows a 2D projection
of a union of 10 clusters, where each cluster contains 10,000 3D data points [11].

10 Fajie Li and Reinhard Klette

5.1 The Input Data Set

There are 10,000 3D data points in each cluster of the data set on [7] (which is
stored in a text file named “en angmom f 000.i”, where i = 00, 01, 02, . . ., 09,
10, . . ., 32). For example, Figure 2 shows the first 20 data points in cluster 0
(i.e., in the file en angmom f 000.00). The union of the first 10 clusters is shown
in Figure 4.

Input data used in experiment below refer to this data set, but after the
following normalization (just for scale reduction): For each point p = (x, y, z) in
the data set, replace p by (x/20, y/11, z/11).

5.2 Some Results

Tables 1 and 2 show recovery rates, approximate recovery rates, and pseudo
recovery rates of Algorithms K and C. n is the number of old clusters of the
input data in Section 5.1 (i.e., the first n old clusters of the 33 old clusters). We
use either one (Table 1) or two (Table 2) iterations. k1 (c1) is the recovery rate of
Algorithm K (C), which is obtained by Algorithm 2. k2 (c2) is the approximate
recovery rate of Algorithm K (C), which is obtained by Algorithm 1. p is short

Table 1. This table shows the results of Iteration 1.

n (k1%, t1 sec, k2%, t2 sec, p%) (c1%, t1 sec, c2%, t2 sec, p%)

5 (59.4, 6.2e-4, 59.4, 4.3e-3, 100) (39.6, 8.8e-4, 39.6, 4.3e-3, 80)

6 (51.6, 7.2e-4, 56.0, 4.6e-2, 100) (40.2, 7.0e-4, 40.2, 2.7e-2, 66.7)

7 (58.7, 8.4e-4, 58.7, 0.3, 100) (28.9, 9.1e-4, 28.9, 0.3, 57.1)

8 (44.5, 0.01, 44.5, 2.3, 87.5) (15.7, 9.9e-4, 15.7, 2.4, 50)

9 (47.6, 1e-3, 47.6, 23.2, 88.9) (12.5, 0.3, 12.5, 23.3, 44.4)

10 (44.4, 0.4, 44.9, 285.1, 90) (24.7, 1.2e-3, 24.7, 256.5, 40)

Table 2. This table shows the results of Iteration 2.

n (k1%, t1 sec, k2%, t2 sec, p%) (c1%, t1 sec, c2%, t2 sec, p%)

5 (51.8, 6.0e-4, 58.2, 4.3e-3, 100) (36.8, 5.9e-4, 36.8, 5.0e-3, 60)

6 (66.2, 6.7e-4, 66.2, 2.9e-2, 100) (46.6, 6.9e-4, 46.6, 3.4e-2, 83.3)

7 (57.4, 7.6e-4, 57.4, 0.3, 71.4) (39.2 , 7.6e-4, 39.2, 0.3, 85.7)

8 (49.9, 8.6e-4, 49.9, 2.3, 87.5) (42.8, 1.1e-3, 42.8, 2.4, 75)

9 (46.7, 3.3e-3, 46.7, 23.6, 77.8) (26.3, 0.01, 26.3, 23.1, 66.7)

10 (53.4, 9.1e-3, 53.4, 303.1, 90) (51.0, 1.7e-3, 51.0, 272.8, 80)

Recovery Rate of Clustering Algorithms 11

for pseudo recovery rate. ti is the running time for obtaining ki (ci), where i =
1, 2.

Tables 1 and 2 show that Algorithm 2 is a good approximation to Algorithm 1
when n ≤ 10. They also illustrate that the running time of Algorithm 1 is indeed
significantly longer than that of Algorithm 2 when n ≥ 10.

6 Conclusions

In conclusion, in this paper we defined a recovery rate of unconstrained clus-
tering, and provided a time-efficient approximate algorithm for estimating this
recovery rate. We are now ready to compare the performance of any two clus-
tering algorithms by comparing their recovery rates for a simulated input (for
example, assuming that a clustering task in image or video analysis allows to
have quite realistic simulated input data). In particular we may analyze next
lower bounds for recovery rates of clustering; see [19].

7 Acknowledgement

The first author thanks Prof. A. Helmi for providing the url of the simulated
astronomical data set (on the public web site [7]), and acknowledges that his
research is part of the project “Astrovis”, research program STARE (STAR E-
Science), funded by the Dutch National Science Foundation (NWO), project no.
643.200.501.

References

1. J. Allan, A. Feng, and A. Bolivar. Flexible Intrinsic Evaluation of Hierarchical
Clustering for TDT. In Proc. CIKM’03, November 3–8, New Orleans, Louisiana,
USA.

2. C. Borgelt. Prototype-based Classification and Clustering. Ph.D. Thesis, Univer-
sity of Magdeburg, Germany, 2006.

3. S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics, 7:488, 2006.

4. D. Crabtree, X. Gao, P. Andreae. Universal Evaluation Method for Web Clus-
tering Results. Technical Report CS-IR-05-3, Department of Computer Science,
Victoria University of Wellington, New Zealand, 2005.

5. G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization
with bags of keypoints. In Proc. ECCV Workshop Statistical Learning Computer
Vision, pages 59–74, 2004

6. S. Datta and S. Datta. Evaluation of clustering algorithms for gene expression
data BMC Bioinformatics, 7:(Suppl 4):S17, 2006.

7. Simulated astronomical data.
//www.astro.rug.nl/~ahelmi/simulations_gaia.tar.gz

8. S. Datta and S. Datta. Methods for evaluating clustering algorithms for gene
expression data using a reference set of functional classes. BMC Bioinformatics,
7:397, 2006.

12 Fajie Li and Reinhard Klette

9. G. Efstathiou, C. S. Frenk, S. D. M. White and M. Davis. Gravitational
clustering from scale-free initial conditions. Monthly Notices RAS, 235:715–748,
Dec. 1988.

10. B. Georgescu, I. Shimshoni and P. Meer. Mean Shift Based Clustering in High
Dimensions: A Texture Classification Example. In Proc. 9th IEEE International
Conference on Computer Vision (ICCV), 2003.

11. A. Helmi and P. T. de Zeeuw. Mapping the substructure in the Galactic halo
with the next generation of astrometric satellites. Astron. Soc., 319:657–665, 2000.

12. Hertzsprung-Russell. en.wikipedia.org/wiki/Hertzsprung-Russell_diagram.
13. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Com-

puting Surveys, 31(3):264–323, September 1999.
14. N. Kehtarnavaz, J. Monaco, J. Nimtschek, and A. Weeks. Color image segmenta-

tion using multi-scale clustering. In Proc. IEEE Southwest Symp. Image Analysis
Interpretation, pages 142–147, 1998.

15. A. Knebe, S.P.D. Gill, D. Kawata and B. K. Gibson. Mapping substructures
in dark matter haloes. Astron. Soc., 357:35–39, 2005.

16. B. Larsen and C. Aone. Fast and Effective Text Mining Using Linear Time Docu-
ment Clustering. In Proc. 5th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, San Diego, California: ACM Press, 16–22, 1999.

17. H. C. Law. Clustering, Dimensionality Reduction, and Side Information. Ph.D.
Thesis, Michigan State University, the United States, 2006.

18. A. V. Leouski and W. B. Croft. An Evaluation of Techniques for Clustering
Search Results. Technical Report IR-76, Department of Computer Science, Uni-
versity of Massachusetts, Amherst, 1996.

19. F. Li and R. Klette. About the calculation of upper bounds for cluster recovery
rates. Technical Report CITR-TR-224, Computer Science Department, The Uni-
versity of Auckland, Auckland, New Zealand, 2008 (www.citr.auckland.ac.nz).

20. N.-X. Lian, Y.P. Tan and K.L. Chan. Efficient video retrieval using shot clustering
and alignment. In Proc. ICICS-PCM, pages 1801–1805, 2003.

21. W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66:846–850, December, 1971.

22. B.W. Silverman. Density Estimation. Chapman & Hall, London, 1986.
23. Z. Wang, S.C. Chen, and T. Sun. MultiK-MHKS: a novel multiple kernel learning

algorithm, IEEE PAMI, 30:348–353, 2008.
24. K.L. Wu and M.S. Yang. Mean shift-based clustering. Pattern Recognition,

40:3035–3052, November, 2007.
25. Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for

document datasets. In Proc. CIKM’02, November 4–9, McLean, Virginia, USA.

