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Abstract. This paper discusses ways of using a single panoramic image
(captured by a rotating sensor-line camera having very-high spatial reso-
lution) for the geometric shape recovery of a shown object. The objective
is to create a sparse polyhedral model, only allowing a few interactive
user inputs for a given single panoramic image. The study was motivated
by the general question whether a single panoramic image projection al-
lows some kind of 3D shape recovery, possibly benefitting from available
monocular approaches for standard (say, pinhole-type) camera models.
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1 Introduction

The computation of 3D structure from stereo images receives increasingly at-
tention due to the enormous progress recently in this area. However, the task
of retrieving 3D information from a single image seems to be a rather ill-posed
problem, yet scientific interest herein dates back many centuries [2]. In fact,
so-called monocular reconstruction cannot work without some kind of a-priori
knowledge (i.e., some assumptions about geometric properties or shapes of the
shown objects, or about surface reflectance).

Apart from utilizing geometric constraints for specified classes of objects
(see, for example, [7, 8]), a popular approach to monocular 3D understanding
applies the concept of vanishing points (see, for example, [4, 5]), as introduced
by painters in the renaissance.

Of course, talented artists may often be successful in modelling manually a
scene from a single photograph, by using common 3D clues for the human visual
system [10].

This paper deals with monocular reconstruction based on images of very
high resolution and with a wide field of view. Such images may be recorded
with so-called rotating sensor-line cameras [6], and the resulting images are also
called cylindrical panoramas. The question arises whether such images, projected
onto a straight cylinder, provide better opportunities for understanding the 3D
structure from only a single image compared to images recorded with a ‘normal’
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Fig. 1. A 3D model of the throne room in castle Neuschwanstein [6]. Here, multiple
laser range-finder scans and multiple cylindrical panoramas have been used. Of course,
a single-view panoramic scan cannot provide this complexity of 3D information (not
even close to this).

(say, pinhole-type) camera. [6] uses cylindrical panoramas for 3D modelling of
(large) objects such as a castle, by fusion of data of a laser range-finder, yielding
visually impressive results, see Figure 1.

However, the 3D information is in this case derived via purpose-designed
measuring equipment (laser range-finder) whose application is characterized by
difficult and labor-intensive manual handling of the involved equipment.

[3] reports about pioneering work on modeling a 3D scene directly from
a panoramic image. However, the presented approach does not yet allow to
reconstruct a broad range of objects, and did also not yet cover the recovery
of aspect ratios.3 Aspect ratios of recorded rectangles may be recovered from a
single (pinhole-type) image; see [9].

The outline of this paper is as follows: Section 2 provides technical prereq-
uisites related to panoramic imaging when projecting onto a straight cylinder.
Section 3 presents a monocular reconstruction method and an example (image
with resulting object model). Section 4 is pointing to particularities of cylindri-
cal panoramas concerning monocular reconstructions. Section 5 contains conclu-
sions.

2 Cylindrical Panoramas

A common cylindrical panorama results from some kind of image stitching, but
to allow for very high-resolution cylindrical panoramas, a rotating sensor-line

3 When mapping a rectangle into a trapezoid by perspective projection, the ratio of
side lengths of the rectangle defines the unknown aspect ratio.
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Fig. 2. Camera model of a cylindrical projection with a single projection center: ∆ϕ
denotes the angular increment, f the effective focal length of the lens, τ is the physical
size of a pixel on the sensor line (assumed to be constant), and l the total physical
length of the sensor line.

camera is an appropriate choice. A (typically, CCD) sensor-line and its projec-
tion center rotate about a defined axis, describing this way a cylindrical surface
(with the recorded panorama) and a circular path, respectively. The recorded
panorama is composed line by line, after (or during) such a rotation (typically
of full 360◦).

If the projection centers of all the recorded lines are at the rotation axis, then
they all coincide, and the circular path degenerates into a single point. Such a
case of a single projection center is illustrated in Figure 2.

The main advantage of such a camera system is its very large spatial reso-
lution. By specifying the number of recorded lines (columns), the wide field of
view of the recorded panorama may even extend beyond 360◦, by recording into
some directions more than once. The data volume of a single 360◦ panorama
is in the range of several gigabytes for contemporary sensor lines of about 10k
color pixels. The main disadvantage is the long exposure time, limiting its use
for dynamic scenes (but also allowing interesting effects such as having a person
repeatedly in a recorded panorama). Some of the intrinsic parameters (such as
focal length, angular increment, size of a pixel) are also illustrated in Figure 2.

As it is most appropriate to record images with square pixels,4 a common
target is to specify the number of columns using an angular increase of

∆ϕ = 2 · arctan
( 1

2τ

f

)
for image recording. We assume (and used) a 360◦ image with pixels known to
have square shape, and this specifies the used intrinsic parameters for monocular

4 To be precise, these are actually ‘cylindrical squares’ on a cylindrical surface.
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reconstruction (up to a scaling factor). Of course, this ignores some possible
(minor) errors, such as having the projection center always exactly at the rotation
axis. We assume a camera center O which identifies the unique origin of all
projection rays.

The principal point is defined by the intersection of the optical axis with
the sensor line, and the actual position of this point will have no impact on
the following discussion. Thus we simply assume that image coordinate j = 0
identifies the principal point (i.e., somewhere within this square pixel).

Projection rays, necessary for monocular reconstruction, can be calculated
from pixel coordinates i and j in the recorded cylindrical image as follows:

tϕ = ∆ϕ ∗ i

tΘ = arctan(
j · τ
f

)

tκ = cos(tΘ)

This defines a ray direction t in spherical coordinates, which is converted into
Cartesian coordinates as follows:

tx = tκ sin tΘ cos tϕ
ty = tκ sin tΘ sin tϕ
tz = tκ cos tΘ

A projection ray r is thus described by r = O + λ · t, for a real λ.

3 Monocular Reconstruction

Reconstruction is the process of determining an approximate geometric surface
model of an object and its pose or attitude (i.e., position and direction) in 3D
space.

3.1 Proposed Approach

The reconstruction approach based on projection rays, and using only a single
image, is as follows: First, some prior knowledge about geometric properties is
necessary, usually related to the shape of the shown objects. Then, a selected 3D
shape prior has to fit the corresponding family of projection rays such that the
image of the object’s shape prior matches to the result of the given projection.
In the 2D case (pinhole-type images), this was reported in [9] for rectangular
objects by calculating a homography such that a given trapezoidal image of a
rectangle was actually mapped into a rectangular shape.

We also discuss rectangular geometric primitives here, but apply it to the
described cylindrical projection. The diagonals of a rectangle are bisecting each
other, say in a 3D point rd. Then we have that

rd =
r1 + r3

2
=
r2 + r4

2
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for the four cyclically ordered vertices rh of the rectangle, with h ∈ {1, 2, 3, 4}.
As the corresponding projection rays of the image of rh should be incident with
rh, it follows that

λ1 · t1 − λ2 · t2 + λ3 · t3 = λ4 · t4
Obviously, from a single image, a reconstruction is only possible up to a

scaling factor. Thus, without restriction of the generality, it can be assumed
that λ4 = 1. This defines a linear equational system t1x −t2x t3xt1y −t2y t3y

t1z −t2z t3z

 ·
λ1

λ2

λ3

 =

 t4xt4y
t4z

 (1)

The unique solution λ1, . . . , λ4 describes the position of those 3D rectangular
vertices up to a scale factor µ as follows: rh = O + µ · λh · th. Scale factor µ can
be determined only if object dimensions are known for real world scenes (e.g.,
height or width of objects in the real world).

However, applied to an object that is composed of several ‘connected’ rect-
angles, a reconstruction result is not satisfactory if every single rectangle is re-
constructed separately. The first reason is that every single rectangle would have
a different scaling factor µ as one of the λh values was set to be equal to one.
Adjusting the scale factors µ over all rectangles based on ‘connectedness’ (i.e.,
sharing of edges) properties of faces of the object still does not allow for a closed
reconstructed object surface due to unavoidable reconstruction inaccuracies.

The following is now our proposition for solving this problem. From an object
consisting of q rectangles with n vertices, a single linear equational system T·λ =
t is derived as follows: An instance of vector t contains data from the ‘first’
projection ray to a vertex which may be incident with up to q rectangles. (The
component λ1 of vector λ is set to be equal to one due to scale ambiguity.)
Assuming that q is the maximum for all considered rays, we have a matrix T
composed of n− 1 columns and 3 · q rows. These contain information about all
the n projection rays, with up to q rectangles in each case.

All the equations of the derived system are as follows:

t12x −t13x t14x · · · t1nx
t12y −t13y t14y · · · t1ny
t12z −t13z t14z · · · t1nz
t22x −t23x t24x · · · t2nx
t22y −t23y t24y · · · t2ny
t22z −t23z t24z · · · t2nz
...

...
...

...
...

...
...

. . .
...

...
...

...
...

tq2x −t
q
3x t

q
4x · · · tqnx

tq2y −t
q
3y t

q
4y · · · tqny

tq2z −t
q
3z t

q
4z · · · tqnz



·



λ2

λ3

...

λn


=



t1x
t1y
t1z
t2x
t2y
t2z
...
...
...
tqx
tqy
tqz
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T is in general a sparse matrix, as one projection ray is often connected to
not more than four rectangles. (For implementation, the multimap-datastructure
from the Standard Template Library [1] may be recommended.)

In general we have that 3 · q ≥ n, and an overdetermined system needs to be
solved, by minimizing the Euclidean norm ‖T · λ− t‖. Due to a high sensitivity
to outliers, this norm might be unsuitable for some objects, as it may violate
our initial assumption of bisecting diagonals of the involved rectangles. Thus,
we only use this for an initial solution for a subsequent nonlinear minimization.
For this we apply as error metric a function ∆ of the form ∆(e) = log(1 + e2/c)
(for some constant c) which assigns smaller penalties to larger discrepancies e
between vertices of rectangles.

Finally, after having computed a solution vector λ, the derivation of a list
of reconstructed rectangles (from T and t, using, for example, the multimap-
datastructure) is kind of straightforward.

3.2 An Example

The proposed method can be used for (approximate) reconstructions of various
objects defined by multiple rectangles. In the example shown below, a room of
an indoor scene is approximated by a cuboid. Corresponding interactive user
inputs (for identifying vertices of rectangles) are illustrated in Figure 3. In this
case, a user selected eight corners of the room.

The shown arcs demonstrate the complexity of projected edges into such a
panorama, basically illustrating that an automated extraction of vertices defines
a challenging problem. Note that further rectangles such as windows or doors
may be selected as well, leading in general to more robust 3D reconstructions.

Table 1 lists pixel coordinates (i, j) of the illustrated interactive user input
and the corresponding coordinates (x, y, z) of reconstructed 3D points.

The maximum angular discrepancy in this example of a reconstructed cuboidal
object is 1.4% (assuming right angles as the golden standard). This may be due
to reconstruction inaccuracies in our optimization process, errors in the actual

Fig. 3. Interactive user input (selection of eight points, or six geometric primitives).
The shown arcs only illustrate how straight segments are curved in a cylindrical pro-
jection; they are not required for interactive input.
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Table 1. Image coordinates of pixels selected in Figure 3 together with results of the
3D reconstruction process.

Point 2D 3D
i j x y z

1 11189 2029 40.47 -50.11 16.84
2 11191 7368 40.49 -50.13 -21.66
3 18703 7414 -12.09 -61.76 -21.83
4 18711 2117 -12.04 -61.67 15.75
5 38702 2098 -36.27 51.42 15.64
6 38698 7409 -36.17 51.39 -21.83
7 46171 7314 16.94 62.70 -22.23
8 46171 2002 16.97 62.75 16.80

imaging process, or even deviations from an ideally cuboidal room in the shown
historic architecture itself.

Figure 4 shows the reconstructed cuboidal room together with mapped tex-
tures using a projection of the image data available in the original (single)
panorama.

4 Pinhole-Type versus Cylindrical Camera

The example illustrated that it is possible to generate a full 3D volume model
from a single 360◦ panoramic image, what is, of course, not possible with a single
image of a pinhole-type camera. For pointing out whether the cylindrical pro-
jection itself is already advantageous compared to the standard pinhole model,
we look at panoramic images with a viewing angle less than 360◦.

Fig. 4. Reconstructed cuboidal room with mapped textures. Circular regions on the
floor and the ceiling were not recorded by the rotating sensor-line camera, and texture
information is thus not available in these areas. (The ceiling is shown to indicate the
reconstructed 3D volume.)
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For 360◦ cylindric images with square pixels, relevant intrinsic camera pa-
rameters were assumed to be given in Section 2. However, angular increment
and focal length of a rotating line camera may also be estimated based on given
(recorded) images.

4.1 Estimation of Angular Increment

The most obvious observation (that should be exploited) is that straight lines
in the real-world are generally bent under cylindrical projection, in difference to
pinhole-type cameras. In the description below we omit lens distortion effects
and assume mathematical cylindrical projection.

Keeping in mind that the straightness of line segments is invariant under ho-
mographies, it is sufficient to ensure that line segments curved due to cylindrical
projection become straight when projected into any plane (e.g., the one shown
in Figure 5). A cylinder-to-plane projection involves the sought-after parameter
∆ϕ, and this can be estimated iteratively.

Fig. 5. Projection of an image cylinder into a tangential plane.

Image coordinates (i, j) of the image cylinder are projected into planar image
coordinates (i′, j′) (on a tangential plane) according to the following equations:

i′ = f · tan(i ·∆ϕ) · 1
τ

j′ =
j

cos(i ·∆ϕ)
(2)

The tangential plane coincides with the cylinder surface at ϕ = 0.
We refer to this as projection Π. It is obvious that only image data within a

viewing angle of 180◦ can be projected onto a tangential plane.
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Now, for any three points (i1, j1), (i2, j2) and (i3, j3) on a ‘curved line’ in the
cylindrical image, assumed to be a projection of a straight segment, the points
(i′1, j

′
1), (i′2, j

′
2) and (i′3, j

′
3), with

(i′1, j
′
1) = Π((i1, j1))

(i′2, j
′
2) = Π((i2, j2))

(i′3, j
′
3) = Π((i3, j3))

have to be collinear. This infers that

j′3 − j′1
i′3 − i′1

=
j′2 − j′1
i′2 − i′1

Note that for i′3 = i′1 or i′2 = i′1, no information about ∆ϕ can be derived as
vertical lines in the world remain straight on the image cylinder provided that
the rotation axis is perfectly upright.

We are able to estimate ∆ϕ numerically by applying interval bisection, with

j′3 − j′1
i′3 − i′1

− j′2 − j′1
i′2 − i′1

≤ ε ≤ 10−5

being the stop criterion.
Note that, although the method is usable for all ‘bent straight segments’

in the cylindrical image, it yields most accurate results for strongly bended
‘horizontal’ segments. In this case, precisions of up to 99.8 % were achieved in
our experiments.

This is only the most simple method for estimating ∆ϕ. Significant improve-
ments concerning the precision can be made by taking more pixels into account
(potentially all available pixels along a bended line segment), and also using
more advanced approximation techniques.

4.2 Estimation of Focal Length

Concerning the focal length, from Equations (2) we see that parameter f is only
a linear coefficient in the projection Π, and therefore cannot be estimated from
curved lines. Normally we also do not know the length l of the sensor line. How-
ever, there is anisotropic scaling depending on the focal length, and this allows
to estimate the (dimensionless) ratio l/f also using a-priori knowledge about
aspect ratios of shown real-world objects (absolute length cannot be estimated
in general due to scale ambiguity of the recorded 3D scene).

Given four vertices r1, ..., r4 of a rectangle and a-priori knowledge about the
ratio

Ξ =
|k1|
|k2|

=
|r4 − r1|
|r2 − r1|

of two of its edges, the ratio l/f can be estimated such that edge ratio Ξ ′,
resulting from the reconstruction of image points of r1, ..., r4, is equal to Ξ.
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In the reconstruction process of image points of r1, ..., r4, value l/f is the only
unknown as ∆ϕ was already estimated, independently from f , in the previous
step. A square-pixel assumption (for the panoramic image) also supports an
initialization for a computationally inexpensive iterative search procedure (e. g.,
interval bisection).

4.3 Use of Vanishing Points

Monocular reconstruction for pinhole-type cameras often utilizes vanishing points.
Those are also of benefit for cylindrical images. As for pinhole-type camera im-
ages, vanishing points allow to estimate object attitudes or the positioning of
the camera coordinate system with respect to the scene.

A vanishing point is a point where two lines virtually intersect in an image,
for two lines which are actually parallel in the 3D world. These lines (in general)
do not project into straight lines in cylindrical panoramas. As a result, one pair
of two parallel lines can actually have two vanishing points in the panoramic
image.

If line segments are only considered in parts of a cylindrical panorama with
a viewing angle less than 180◦, then their vanishing points can be calculated
conveniently using the projection Π as defined above, as well as its inverse
projection Π−1. Attention must be paid for choosing points in the cylindrical
image with i-coordinates suitable for Π, as it is of little use when the calculation
of the intersection of two lines (projected into the plane) is numerically unstable
(e. g., when they are nearly parallel).

Now assume one line, containing points p1 and p2, and a second parallel line,
containing p3 and p4; both vanishing points v1 and v2 are as follows:

v1 = Π−1
i1
Ψ−1((ΨΠi1(p1)× ΨΠi1(p4))× (ΨΠi1(p2)× ΨΠi1(p3)))

v2 = Π−1
i2
Ψ−1((ΨΠi2(p1)× ΨΠi2(p4))× (ΨΠi2(p2)× ΨΠi2(p3)))

where Ψ and Ψ−1 denote the transformation from Cartesian to homogeneous
coordinates and vice versa, whereas the indices i1 and i2 of Π indicate that
different cylinder coordinates i have to be used for obtaining both vanishing
points.

Points p1 and p2 are unsuitable if the third component of the vanishing point
in homogeneous coordinates is close to zero (i.e., parallel lines), and it is also
critical if the Euclidean distance between v1 and v2 is very small (i.e., only ‘one
point’). In any of these cases, some permutation of assigned i-values may define
a solution.

In case that a pair of bended line segments covers more than 180◦ in the
given cylindrical panorama (what occurs, for example, on the ceiling or on the
floor of a room), a plane being tangential to the cylinder surface is unsuitable
for the considered projection Π; in this case we would prefer a plane with a
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normal vector almost parallel to the rotation axis. Apart from projection Π, the
calculation of vanishing points remains the same.

An advantage of panoramic images in comparison to ‘normal’ images is that
panoramas have a wider field of view, such also showing more projected lines,
and thus, potentially, more vanishing points.

5 Conclusions

In [6] it is discussed how stereo pairs of cylindrical panoramas may be used for 3D
reconstruction. In this paper we have specified a way how to use segmentations of
3D shapes into rectangles to ensure approximate 3D reconstruction just based on
a single cylindrical panorama. The use of the intersection point of both diagonals
of a rectangle proved to be useful for this approach.

The ‘bending’ of straight lines, as occurring in panoramic images due to
cylindrical projection, may be entirely characterized by two pixels on such an
arc, the focal length, and the angular increment ∆ϕ. Therefore, it is also possible
to apply the concept of vanishing points for 3D reconstruction; see [4, 5] for
‘normal’ images.

Object surfaces different from multiple rectangular faces are also possible for
approximate monocular reconstruction; see [8]. These are, for example, spheres,
circular discs, cylinders, or some specially shaped room corners (with a-priori
knowledge about their geometry). The (manual) reconstruction of freeform shapes,
which widely expands the functionality of a system for monocular reconstruc-
tion, is demonstrated in [10] and its incorporation for panoramic images was
already proposed there.
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