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Abstract. This paper approximates ground truth for real-world stereo
sequences and demonstrates its use for the performance analysis of a
few selected stereo matching and optical flow techniques. Basically we
assume zero roll and constant tilt of an ego-vehicle (for about 10 seconds)
driving on a planar road.
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1 Introduction

Stereo matching and motion analysis are two very active research areas in com-
puter vision. The quantitative evaluation of algorithms, as offered by the Middle-
bury stereo website! and their optical flow website? are often cited today as the
state-of-the art of current performance evaluation of stereo or optical flow algo-
rithms. Those evaluations have contributed considerably to significant advances
in algorithm performance. However, evaluations on those Middlebury websites
are based on high quality and high resolution color images, which are also only
short sequences (of only a few frames) that are recorded in a lab environment,
typically carefully designed to test for particular features. The challenges for
stereo and optical flow algorithm in today’s real world applications surpass such
designed datasets and evaluation methods.

This paper deals with real-world stereo sequences. We refer to Set 1 (pro-
vided by Daimler AG) of the .enpeda.. sequences®, as described in [4]. These
seven stereo sequences are taken with two Bosch (12-bit, gray-value) night vi-
sion cameras. Each sequence contains 250 or 300 frames (640x481), and features
different driving environments, including highway (see Figure 1), urban road and
rural area. Camera calibration is used for geometric rectification, such that image
pairs are characterized by standard epipolar geometry as specified in [3].

! http://vision.middlebury.edu/stereo/
2 http://vision.middlebury.edu/flow/
3 http://wuw.mi.auckland.ac.nz/ and follow the data link
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Fig. 1. Sample of a stereo pair (of Sequence 1).

Intrinsic camera parameters and extrinsic calibration parameters for left and
right camera (also in relation to the car) are provided. The vehicle’s movement
status is also given for each frame. We discuss a way to extract ground truth
from these sequences.

2 Quality Metrics

To evaluate the performance of a stereo or optical flow algorithm and understand
how their parameters affect results, we need a quantitative way to measure the
quality of calculated stereo correspondences or motion vectors.

2.1 Stereo

The general approach of stereo evaluation is to compute error statistics based on
given ground truth. (Note that any ground truth comes with some measurement
error; ground truth is not truth.) We use the same error measurements as on
the Middlebury stereo website, namely the root mean squared error between the
disparity map d(z,y) and the ground truth map dr(z,y), defined as follows:

Er = (- Y |d(,y) — dr(z, ) &

where n is the total number of pixels, and the percentage of bad matching pizels,
defined as follows:

B =+ 3 (ld(e,y) — dr(e,v)] > 6a) @

where d,4 is the threshold of disparity tolerance.

2.2 Optical Flow

Quality metrics for optical flow evaluation have to measure the result in a 2D
space. We use the common angular error defined as the average angle between
estimated optical flow vector u and the true flow vector ur,

_ l u-ur
Ear = - Zarccos (—|u||uT|) (3)
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where |u| denotes the length (magnitude) of a vector, and the end point error
which measures the absolute distance between end points of vectors u and urp,

Epp=+/(u—ur)?+ (v—vp)? (4)

3 Approximate Ground Truth

We approximate ground truth with respect to an assumed (!) planar road surface,
using known parameters of ego-vehicle and cameras (as saved in the camera.dat
file and in the file header of every frame; see [4]).

3.1 Disparities on Road Surface

We consider the test sequences to be ego-motion compensated, which means that
the horizon is always parallel with the row direction in the images. We conclude
that pixels on the same image row have the same depth value if a projection of
the planar road surface.

A side-view of the camera setting is shown in Figure 2, where 6 is the known
tilt angle, P is a road surface point which is projected into p = (z,,y,) on the
image plane, H is the height of the camera. It follows that

Z =d.(OP,) = d.(OP)costp = cos (5)

H
sin(6 + )
According to the stereo projection equations, the disparity d can be written as

b f b-f
R . - (6)

H
sin(6+1) cos ¢

where angle ¢ can be calculated as follows, using focal length f and pixel coor-
dinate y, in the image:

1) = arctan (W) (7)

Image plane

Ad infinitum

Fig. 2. Projection of a point P of the road surface.
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Original left image Road surface mask

Computed disparity Disparity mask

Fig. 3. Generation of a disparity mask: input image, manually generated mask, depth
map of a planar road, and resulting disparity mask.

Here, yo is the y-coordinate of the principal point, and s, is the pixel size in
y-direction. We can also compute the y-coordinate of a line that projects to
infinity

Yo — f - tanf

Yinf = 5y

This is the upper limit of the road surface, and points on it should have zero
disparity (if no objects block the view).

Figure 3 illustrates the process of generating an approximated disparity map
on road surface areas, also using manual input for a conservative outline of the
road area in a given image. In the given camera setting (of the seven sequences),
there is a yaw angle (0.01 radian) which makes the cameras looking a little bit
to the left. This angle can be ignored because it only defines the right camera
to be about 3 mm behind the left camera.

3.2 Local Displacements of Road Surface

Speed and direction (yaw rate) of the ego-vehicle are given for all frames of those
seven sequences. The road is, obviously, static, what makes the calculation of
relative movement of road surface points (with respect to the camera) straight
forward.

Given a pixel p on the image plane at time ¢, which is projected to a road
surface point P. Let P move to a new position P’ at time t + 6t, where 4t is
the time interval between two consecutive frames (called CycleTime in the seven
sequences, either equals 0.04 s or 0.08 s). Then, P’ is projected back to the image
plane at p’; see Figure 4. The approximation of local displacement at a pixel can
then proceed as follows:
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Image plane

Road surface

P > 0,
Fig. 4. Approximation of local displacement in y-direction: P and P’ is the same road
surface point, just in two consecutive frames. P is projected into p = (z,y) in the image

plane, P’ is projected into p’ = (z',y’).

First, assume that the vehicle speed equals v at time ¢, and v’ at time ¢ + dt;
the average speed during this time interval equals 6t is v = "Jg" , having &t very
small in the sequences. Distances (in Z,,qq coordinates) of moving points are

defined as follows:

_ [val + |ve cos(PLE#2

2 2
where 1 and @- are the yaw angles of the ego-vehicle at ¢ and ¢t + 1, and ¢, is
the yaw angle of the camera installation (see Figure 5). Therefore, the distance
between the point P and the host vehicle becomes

dz (P, P") = |[v| cos( + )it

+ p.)ot

H
Zp =dz(0,,P)=dz(0,,P) —dz(PP) = ———— —dz (PP
b =42(0,, P') = d5(0r, P) ~ d5(PP') = oo = du(PP)
Then, the angle between the projection ray OP’ and the optical axis of the
camera may be determined as follows:

H

dz(0,, P) — dZ(P,P’)) —0

¢’ = arctan (

= arctan (

H
dZ(OT,P’)) —0

)

i >
Ego Vehicle

Fig. 5. Change in relative position between road surface point P and ego-vehicle.
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Fig. 6. A rotation of the ego-vehicle.

where dz(O,, P) = m'

Therefore, according to Equation (7), the y-coordinate of the local displace-
ment u at point P’ can be written as

(f - tan(¢)’)

5y +y0) —Yp

V=
Thus, we are also able to specify the position of point P in x-direction as follows
. Zp . Jip

Xp ==

with Zp = Sm(fwcos 1, which is actually already a known value from the

previous stereo ground truth approximation.
The position of P’ (for the next frame) can then be calculated by using speed
v and time interval §t,

Xpr = Xp — |v|sin(p + ¢.)ot

Now we have the new relative position between the road surface point and the
vehicle at time ¢ 4 §t. - In a next step, we need to rotate the vehicle coordinate
system by an angle according to the yaw rate given in the vehicle movement pa-
rameters; see Figure 6. Therefore, the final (relative) position is given as follows:

(3] = [ty i) [ 2]

In a final step, point P is projected back to a pixel p’ on the camera’s image
plane. Then, the local displacement is obtained by comparing locations of p and
p’, as follows:

, H
1’ = arctan (—) -0

z%,
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I Xp
—|—y0)—yp and U=Tpy —Tp=—fF — ——~—
Sy sin(0+v") 008(1/1 )

4 Recalibration of Tilt Angle

Although a camera tilt angle is already given for these sequences, we noticed
that the angle is not always true when verifying the data. This problem might be
caused by several reasons, for example, the road surface is changing (downbhill,
uphill), the car coordinate system is not parallel to the road surface in some
situations (acceleration, braking), drivers of different weight, or driving with flat
tires, or the installation of cameras may change for some reasons. (Actually,
changes are easy to detect by reading the position of the Mercedes star in the
given images.)

The outlined process for obtaining approximate stereo ground truth identified
the importance of the tilt angle for the estimated values. We propose a method
to estimate the average tilt angle for a given sequence of frames. This method
is similar to the road surface stereo approximation, just in a reverse order. We
estimate the tilt angle based on given depth at some feature points (i.e., with
known disparities) which can be measured or identified manually.

See Figure 3 and assume a given pair of corresponding points, with disparity
d. By Equation (6) we have that the tilt angle can be written as follows:

Hcosvy -d

N (5)

0 = arcsin (
where 9 is as given in Equation (7).
Altogether, at first, we randomly select five or six frames from a sequence of
frames, then, we calculate or choose pairs of corresponding pixels on the road
surface area, and obtain disparities between those. Each disparity (of one pixel
pair) can be used to calculate a tilt angle using Equation (8), and a mean of those
provides a tilt angle estimation; see Table 1 for results for the seven sequences.
A more refined estimation is illustrated by Table 2; here, overlapping intervals
of 20 frames are used to estimate tilt in each interval, and the table illustrates
the actual variations.

Table 1. Results of tilt angle estimation for the given seven sequences.

Sequence name Tilt angle (radian)
1: 2007-03-06-121807 0.01608
2: 2007-03-07-144703 0.01312
3: 2007-03-15-182043 0.02050
4: 2007-04-20_083101 0.06126
5: 2007-04-27_145842 0.06223
6: 2007-04-27_155554 0.06944
7: 2007-05-08_-132636 0.05961
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Table 2. Results of tilt angle estimation for short frame periods (first pair of frames
and the following 19 pairs of frames) of sequence 2007-04-27_155554.

First pair of frames 1 11 21 31 41 51 61 71 81 91 101 111
Tilt angle (102 of a radian) 80 71 60 60 62 63 65 70 77 71 63 66
First pair of frames 121 131 141 151 161 171 181 191 201 211 221 231

Tilt angle (10~° of a radian) 60 50 50 59 58 54 55 56 58 53 53 42

5 Results for Selected Techniques

We illustrate the proposed ground truth estimation by providing resulting eval-
uation data for a few stereo and optical flow techniques, as available on [5], or
re-implementing published methods.

5.1 Stereo

For stereo, we run a standard stereo dynamic programming (DP) approach (e.g.,
see [3]), also modified by using some spatial propagation of disparities (from
previous row to the current row, with a weight of 20%) or some temporal prop-
agation of disparities (from the same row in the previous pair of frames, again
with a weight of 20%).

Furthermore, we run Birchfield-Tomasi (BT, designed to be an improvement
of standard stereo DP), and also implemented a semi-global matching technique
using mutual information (SGM-MI) as a cost function (with three pyramid
levels and 16 paths). See the Middlebury website for related references. (The
experiment on Sequence 7 is only performed on the first 220 frames, instead of
the total number of 250, because the road surface is reduced to a very small area
after the ego-vehicle makes a large turn to the left.)

Regarding the standard DP algorithm, sequence 1 returns smallest RMS
errors and bad matching percentages. In contrast, Sequence 6 returns the largest
error values out of the seven sequences.

In spatial propagation (DPs), the method takes 20% of the disparity value
from the previous scanline into the final result. In other words, we apply

! (1 — )\1)d%t + Aldy—l,t where )\1 =0.2

Yt

Temporal propagation (DPt) uses

! (1 — )\2)dy,t + )\Qdy’t,1 where My = 0.2

Yt

and temporal and spatial propagation combined (DPts) uses

. (1= X1 — Xo)dy s + Mdy—1 + dady -1

R

where \; = 0.1 and A\ = 0.1.
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Fig. 7. Comparing RMS error results between DP and DPt.

Figure 7 shows a comparison between DP and DPt for all the frames of
Sequence 1. Time propagation shows here (and for the other sequences) an obvi-
ous improvement by keeping the RMS error about at the local minimum of the
standard DP. Of course, driving on a plane means that disparity values should
remain constant, and any deviation from this may be used to detect a change,
such as a ‘bumpy’ road.

A comparison with respect to the second quality metric (percentage of bad
matches) is shown in Figure 8. Similar to RMS errors, DPt shows best results.
(Note that this evaluation is only restricted to the road surface area.)

Bad Match (%)
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Fig. 8. Percentages of bad matches for DP and its variants.
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Now we discuss the Birchfield-Tomasi algorithm (BT). Surprisingly (?), com-
pared with DP techniques, the disparity maps and the quality metrics indicate
bad results for BT; disparity values are typically incorrect on the road surface.

This bad performance may be due to the following two reasons. First, the BT
algorithm is developed on the concept of the existence of depth discontinuities.
However, depth discontinuities may not exist in many real world situations, such
as on the road. Second, the BT algorithm uses a disparity propagation method
to fill in untextured areas, both in horizontal and vertical directions. However,
within the road surface area, the true disparities only change very smoothly in
vertical direction.

We also run the BT algorithm (as implemented) on Middlebury stereo data.
The same problem, as widely visible in the road scenes, occurs in the untextured
area in the upper right corner.

The third stereo algorithm, to be discussed here for the provided approxi-
mated ground truth, is SGM-MI algorithm (16 directions for cost aggregation,
three pyramid levels to calculate mutual information iteratively). Again, this
experiment does not follow performance evaluations results as published on the
Middlebury stereo page, this time for SGM: Calculated disparity maps are quite
sparse in untextured road surface areas, but more dense in other areas, like ve-
hicles, buildings or trees. Possibly we simply did not use a sufficient number of
iterations for mutual information calculations. Because SGM shows more rea-
sonable results on objects or textured areas, it might be recommended to have
DPt in lower regions of the image sequence, and an SGM technique (probably
not MI) in upper parts of the images.

5.2 Optical Flow

This section reports about experimental results for three ‘classical’ optical flow
algorithms (Horn-Schunck, Lucas-Kanade, and Pyramid Lucas Kanade) on those
seven real-world sequences, using the evaluation metrics as given in Section 2.2.

At first we discuss the original Horn-Schunck (HS) and the Lucas-Kanade
(LK) algorithm. Results obtained for HS and LK are meaningless and unsuit-
able for comparison, certainly because of the given ‘structureless’ images (Sobel

Sequence name Number of frames Angular error End point error
(degrees) (pixels)
1: 2007-03-06-121807 300 73 20.7
2: 2007-03-07_144703 300 97 8.9
3: 2007-03-15_182043 300 64 9.5
4: 2007-04-20-083101 250 45 14.4
5: 2007-04-27_145842 250 66 13.4
6: 2007-04-27_155554 250 32 20.9
7: 2007-05-08_132636 220 32 6.5

Fig. 9. Mean angular errors and end point errors for the PyrLK optical flow algorithm.
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Fig. 10. Angular errors and endpoint errors for PyrLK on Sequence 6.

preprocessing improves the results, similar to [2], where this was noticed for
stereo belief propagation on those seven sequences). There might be two reasons
for this problem. First, these seven real-world sequences are captured by night-
vision cameras which produce somehow blurry and low contrast images, with
large non-textured areas on road surfaces. Second, these two classic algorithms
may only handle small displacements properly (say, magnitudes of 3-5 pixels),
but most pixels in the road mask have actually much larger local displacements
than that.

The third algorithm is the pyramid Lucas-Kanade (PyrLK) algorithm. This
algorithm runs at first a Canny edge detector on the input images, and uses
then edge points as feature points. Finally. it uses five pyramid levels and a
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Fig. 11. Angular errors and endpoint errors for PyrLK on Sequence 7.
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3 x 3 window to compute optical flow vectors for those feature points (only).
Table 9 shows the evaluation results of the PyrLK algorithm on each sequence.
Average angular errors range from about 30 to 100. This is because many of the
computed optical flow vectors are actually normal flow, which is perpendicular
to the local edge.

Figure 10 shows the quality metrics for PyrLK results on Sequence 6. In the
first 135 frames, the ego vehicle stops, and both errors are close to zero. After
that, the vehicle starts doing ‘snake-like’ movements, and causes that the quality
of optical flow result drops significantly. Figure 11 shows the quality metrics for
Sequence 7. In the first 30 frames, the ego-vehicle is parked besides the road,
then, in the next 70 frames, the ego-vehicle turns to the right. During this period,
the quality also drops, because the road surface is bumpy. After that the vehicle
starts moving straight on a flat road surface, and the errors reduce smoothly.

By comparing quality metrics with vehicle data (see image headers), we notice
that the occurrence of a local maximum in errors is most likely to match with a
change in the CycleTime, normally equals 0.04, but occasionally 0.08.

6 Conclusions

The difficulty for the evaluation of stereo and motion techniques on real-world
sequences is the lack of ground truth. This problem is partially solved in this
paper by approximating the 3D geometry of the road.

Algorithms (and parameters for those) have mainly be selected for illustrating
the proposed evaluation methodology. Further approximate ground truth (such
as estimated poses of simple objects, such as rectangular faces in the scene)
might be accumulated, to go, step by step, towards a 3D modeling of the actually
recorded real scene. Of course, some objects or features are not of interest with
respect to applications such as driver assistance or traffic monitoring.

The order of the algorithms’ performance is clearly inconsistent to that re-
ported on the Middlebury stereo or optical flow website. This difference shows
the necessity for establishing performance evaluation methods also (!) on various
real-world sequences.
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