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Abstract

Vision-based driver assistance systems are designed for, and imple-

mented in modern vehicles, for improving safety and better comfort. This

report reviews areas of research on vision-based driver assistance systems

and provides an extensive bibliography for the discussed subjects.

1 Introduction

Vision-based driver-assistance systems (VB-DAS) still assume a driver in the
ego-vehicle (i.e. that vehicle where the system operates in); autonomous driv-
ing can benefit from solutions designed for VB-DAS. Image or video data are
recorded in the ego-vehicle and analysed for improved tra�c safety or com-
fort. Computer vision is the general discipline for designing solutions for the
understanding of image or video data [1].

1.1 What is Vision-based Driver Assistance ?

VB-DAS belong to the general class of driver-assistance systems (DAS). Besides
cameras, DAS (often also called ADAS, for advanced DAS) use also further
sensors such as GPS, IMU (= inertial moment unit), radar, sound, or laser
range-finders [2].

See Fig. 1 for a sketch for multi-sensor data collection in a car. Adaptive
cruise control (ACC) was pioneering those approaches in the early 1990s: lon-
gitudinal distance is measured by a radar unit (e.g. behind the front grille or
under the bumper), and more recently also by employing a laser range-finder or
stereo vision [3].

Historically, VB-DAS started with solutions for lane-departure or blind spot
supervision; for example, see [4, 5] for related comments and references. It is
now a common feature in modern vehicles; for example, see [6, 7].

VB-DAS combine one or multiple cameras, a processing unit with imple-
mented applications, possibly interfaces to further sensors available in the ve-
hicle, or to vehicle components related to vehicle control (e.g., if the system
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Figure 1: Graphical sketch for multi-sensor data recording. Courtesy of Clemens
Dannheim

detects an obstacle on the left of the vehicle then steering to the left can be
blocked) or to vehicle-driver communication (e.g. using the windshield as a
head-up display, a visual signal may point to a potential risk).

This chapter discusses only tasks for computer vision related to driver assis-
tance (How to solve automatically visual perception tasks for driver assistance?);
it is not covering non-camera sensors or interfaces with other components in the
ego-vehicle.

Computer vision often classifies approaches into low-level vision (e.g. image
processing, stereo vision, or optic flow), medium-level vision (e.g. semantic
segmentation of images, or object detection), and high-level vision (e.g. object
tracking or the complex understanding of perceived scenes).

This classification does not correspond to the complexity of studied prob-
lems; for example, optic flow calculation (a low-level vision approach towards
motion analysis) is in general more challenging than lane analysis for situations
of well-marked lanes and reasonable lighting conditions, and often also more
challenging than the detection and recognition of a particular tra�c sign (e.g.
stop sign or speed-limit sign).

1.2 Why Driver Assistance Systems?

In 2011, about 1.24 million people died worldwide due to tra�c accidents [8],
this is on average about 2.4 people every minute. Road injury ranked number
9 in 2011 for causes of death in the world, for example by far ahead of all
war-related deaths.

VB-DAS, as DAS in general, are designed to reduce the number of tra�c
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accidents (i.e. more safety for the driver, but also for all the passengers in the
ego-vehicle, and also for any other participant in on-road tra�c).

Improved comfort is the second reason for designing DAS. For example,
stop-and-go driving at slow speed can be replaced by autonomous driving, or
the unevenness of the road ahead can be detected and compensated by the car
[6].

1.3 Proofs of Existence

The visual system of human beings provides a proof of existence that vision
alone can deliver nearly all of the information required for moving around safely
in the 3D world [9].

Visual odometry supported by our “build-in IMU” (i.e. accelerometer and
gyroscope, with related sensors in the ears) defines human navigation. Thus,
in principle, multiple cameras and an IMU are potentially su�cient for solving
navigation tasks in the real world.

The Mars rovers “Curiosity” and “Opportunity” operate based on computer
vision; “Opportunity” has done so since 2004.

1.4 Cameras and Frames

Cameras in the ego-vehicle record frames at di↵erent time slots t, typically at 25
Hz or higher frequency. We speak about frame t if these image data are recorded
at time t ·4t. Formally, frame t is denoted by I(., ., t) assuming a single camera
for recording (i.e. a monocular case). The camera records grey-level or color
values I(x, y, t) at a pixel position (x, y) at time slot t.

A frame, recorded at time slot t, can also be a time-synchronized stereo-pair
of images. In such a binocular case (i.e. like human stereo vision), we have two
video streams; a frame is then composed of two images L(., ., t) and R(., ., t) for
a left and a right channel, formally I(., ., t) = (L(., ., t), R(., ., t)).

Outward-recorded (or looking-out) frames should have a large bit depth (e.g.
at least 10 bits per pixel in each recorded channel), a high dynamic range (i.e.
for being able to deal with “sudden” changes of light intensities between frames,
or within one frame) and a high pixel resolution (e.g. significantly larger than
just 640⇥480 VGA image resolution) for supporting accurate vision algorithms
considering a wide horizontal angle (a wide vertical angle is less important).

Inward-recorded (or looking-in) frames for monitoring the driver, or the ego-
vehicle occupants in general [10], might be of lower pixel resolution than for
outward-recording.

Outward-recording should aim at covering as much as possible of the full 360�

panorama around a vehicle. For doing so, multiple time-synchronized cameras
are installed “around” the ego-vehicle, for example stereo cameras looking for-
ward or backward. This extends binocular vision then to multi-ocular vision,
and a recorded frame at time t is then composed of multiple images.
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1.5 Performance Requirements and Evaluation

Ideally, VB-DAS have to operate for any occurring scenario, whether sunshine,
rain in the night, driving in a tunnel or on serpentines, inner-city or highway
tra�c, and so forth. There are crash tests for evaluating the physical compo-
nents of a vehicle; for evaluating solutions for VB-DAS it is necessary to run
implemented applications on a large diversity of possibly occurring scenarios.
Test data (i.e. a video data benchmark) can be recorded in the real world, or gen-
erated by computer-graphics programs (e.g. for simulating particular changes
in processed frames).

The evaluation of solutions in relation to particular real-world scenarios has
been discussed in [11]. Solutions can be characterized as being accurate or
robust. Accuracy means correctness for a given scenario. Robustness means
“su�cient” correctness for a set of scenarios which may also include cases of
challenging scenarios. Ideally, robustness should address any possible scenario
in the real world for a given task.

Used benchmarks should be of high diversity and complexity; used video data
need to be evaluated for understanding their complexity. For example, changes
in recorded video data can be characterized by using quantitative measures such
as video descriptors [12] or data measures [13]. Sets of benchmark data should
represent hours or days of driving in a wide diversity of possible scenarios.

Figure 2: Examples of benchmark data available for a comparative analysis of
computer vision algorithms in a tra�c context. Left: Image of a synthetic image
sequence provided on EISATS (with accurate ground truth about distances and
movements on this website). Right: Image of a real-world sequence provided on
KITTI (with approximate ground truth about distances on this website)

Currently there are only very limited sets of data publicly available for com-
parative VB-DAS evaluations. Figure 2 illustrates two possible ways for gener-
ating benchmarks, one by using computer graphics for rendering sequences with
accurately-known ground truth, as done for one data set on [14], and a second
way by using high-end sensors (in the illustrated case for [15]; approximate
depth ground truth is provided by the use of a laser range-finder).

1.6 Adaptive Solutions

We cannot expect to have all-time “winners” when comparatively evaluating
computer vision solutions for defining VB-DAS applications. Vehicles operate
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in the real world, which is so diverse that not all of the possible event occurrences
can be modelled in underlying constraints for a designed program.

Particular solutions perform di↵erently for di↵erent scenarios, a winning pro-
gram for one scenario may fail for another one. We can only evaluate how partic-
ular solutions perform for particular scenarios, possibly defining an optimization
strategy for designing VB-DAS which is adaptive to the current scenario.

1.7 Premier Journals and Major Conferences

Research contributions in VB-DAS typically appear in premier journals such as
IEEE Transactions on Intelligent Tra�c Systems, IEEE Intelligent Tra�c Sys-
tems Magazine, IEEE Transactions on Vehicular Systems, IEEE Transactions
on Pattern Analysis and Machine Intelligence, or Computer Vision and Im-
age Understanding. Major conferences with contributions on VB-DAS are the
annual IEEE Intelligent Vehicles Symposium, and the annual IEEE Intelligent
Transportation Systems Conference.

2 Safety and Comfort Functionalities

Before discussing computer vision tasks, we briefly point to functionalities where
recorded video data or graphical visualisations are simply used for enhancing
the driver’s visual perception of the environment, for safety or driver comfort.

2.1 Avoidance of Blind Spots

The blind spot is the total area around the ego-vehicle which cannot be seen by
the driver. This is typically composed by an area behind the vehicle and two
areas on the left and right of the vehicle. A simple VB-DAS solution is to show
video data of those areas to the driver on a screen at times when of relevance.

2.2 Night Vision

VB-DAS may also support a driver’s visual perception in the night or during
otherwise limited viewing conditions (i.e. rain, snow, or fog), thus increasing
the seeing distance and improving object recognitions. This is typically im-
plemented by showing improved video data on a screen, but this can also be
achieved by using a head-up display. Fog detection (for driver warning), see
[16], is an example for distinguishing weather conditions.

The automotive industry designs active (i.e. use of a near-infrared light
source built into the vehicle, which is invisible for the human eye but visible for
a standard digital camera) or passive (i.e. no special illumination of the scene
but capturing of thermal radiation) recording systems for providing enhanced
images for the driver.
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2.3 Virtual Windshield

The head-up display, or virtual windshield, is an e�cient way for representing
information to the driver without creating a need to change the head pose.
Indoor-recording with face detection may be used for an accurate understanding
of the driver’s head pose.

The virtual windshield may be used, for example, for informing about speed,
distance to destination, or navigation data. No computer vision needs to be
involved for these cases.

The virtual windshield may also be used for informing about currently ap-
plying tra�c signs (e.g. speed limit), for providing an enhanced view on lane
borders in the night, for a flashing light indicating a view direction towards
a potential hazard (e.g. a detected pedestrian in low-light conditions), or for
labelling visible buildings (e.g. hotel chain).

For the mentioned examples, the shown information is mostly derived from

Figure 3: Two examples for a virtual windshield in a BMW. The “7” in the
lower image identifies the current gear. Courtesy of Clemens Dannheim
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particular VB-DAS applications (e.g. for tra�c sign detection and recognition,
visual lane-border analysis, or an advanced tra�c hazard detection system; see
related material later in this chapter).

3 Basic Environment Perception

The basic tra�c environment consist of the ego-vehicle, other vehicles or pedes-
trians, tra�c-relevant obstacles or signs, the ground manifold (i.e. the geometric
ground-level surface; often it can be assumed that the ground manifold is ap-
proximately a ground plane, at least in a local neighbourhood to the ego-vehicle),
the road, and the lanes.
Ego-motion describes the ego-vehicle’s motion in the real world. Vision can help
to control ego-motion according to the given obstacles or planned manoeuvres.
For basic navigation support, only the existence of obstacles needs to be detected
without understanding their type or movement, or the possible implications of
those movements.

3.1 Distance Computation

Stereo vision is the dominant approach in computer vision for calculating dis-
tances. Corresponding pixels are here defined by projections of a surface point
in the scene into images of multiple cameras. The applied vision system knows
about the calibration data of those cameras and rectifies the recorded images
into canonical stereo geometry such that 1-dimensional (1D) correspondence
search can be constrained to identical image rows.

Figure 4: Left: One image of a stereo pair. Right: Visualization of a depth
map using the colour key shown at the bottom for assigning distances in metres
to particular colours. A grey pixel indicates low confidence for the calculated
depth value at this pixel. Courtesy of Simon Hermann
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Corresponding pixels define a disparity, which is mapped based on camera
parameters into distance or depth. There are already very accurate solutions for
stereo matching, but challenging input data (rain, snow, dust, sunglare, running
wipers, and so forth) still may pose problems. See Fig. 4 for an example of a
depth map. For example, stereo vision, combined with motion analysis (called
6D vision, see [17]), provides basic information used in Daimler’s “Intelligent
Drive” system.

The third-eye technology [18, 13] provides a way for controlling the accuracy
of an applied stereo matcher (i.e. of calculated disparity values). A measure
based on normalized cross-correlation (NCC) is used for evaluating disparities
frame by frame, thus identifying situations where a selected stereo matcher fails
(and should be replaced by another matcher; see section on adaptive solutions
above).

Combining stereo vision with distance data provided by laser range-finders is
a promising future multi-modal approach towards distance calculations (recall
that this chapter discusses vision sensors only). There are also ways to estimate
distances in monocular video data [19].

3.2 Motion Computation

Dense motion analysis aims at calculating approximately-correct motion vectors
for “basically” every pixel location p = (x, y) in a frame taken at time slot t

[1]; see Fig. 5 for an example. Sparse motion analysis is designed for having
accurate motion vectors at a few selected pixel locations. Dense motion analysis
is suitable for detecting short displacements (known as optical flow) [20], and
sparse motion analysis can also be designed for detecting large displacements

Figure 5: Visualization of optical flow using the colour key shown around the
border of the image for assigning a direction to particular colours; the length of
the flow vector is represented by saturation, where value ‘White’ (i.e. undefined
saturation) corresponds to ‘no motion’. Left: Ground truth for the image shown
on the left of Figure 2. Right: Calculated optical flow using the Horn-Schunck
algorithm published in 1981. Courtesy of Tobi Vaudrey

8



[21]. Motion analysis is a di�cult 2D correspondence problem, and solutions
might become easier by having recorded high-resolution images at a higher frame
rate in future.

Moving objects in a tra�c scene can be tracked by using repeated detections,
or by following an object detected in a frame recorded at time t to a frame
recorded at time t+ 1. A Kalman filter (e.g. linear, general, or unscented) can
be used for building a model for the tracked motion as well as for involved noise
[22]. A particle filter can also be used based on extracted weights for potential
moves of a particle in particle space.

3.3 Ego-Motion

Object tracking is an important task for understanding the motion of the ego-
vehicle, or of other dynamic objects in a tra�c scene. Ego-motion needs to be
calculated for understanding the movement of the sensors installed in the ego-
vehicle. For example, an inertial moment unit (IMU) in the ego-vehicle provides
a non-vision approach for ego-motion analysis.

Visual odometry uses recorded video data for calculating ego-motion; see
Fig. 6. Possible approaches are characterized by feature tracking (a feature is
a key point, i.e. a pixel, in one frame together with a descriptor characterizing

Figure 6: Calculated trajectory for the ego-vehicle of Sequence 3 in Data-set 1
of EISATS. Courtesy of Ali Al-Sarraf
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image data around this key point; see [1]), bundle adjustment [23, 24] (i.e. the
combined analysis of camera movement and of detected 3-dimensional points in
the tra�c scene), or by direct motion estimation, e.g. by simply applying an
optical flow algorithm combined with non-visual sensor data such as GPS or of
an inertial measurement unit (IMU) [25], or, more advanced, by applying 6D
vision [17].

[24] defines bundle adjustment by refining the 3D model as well as detecting
camera parameters. A set of n 3D points bi is seen from m cameras (e.g. a
camera at m di↵erent times while recording a video sequence). The cameras
have parameters aj . Let Xij be the projection of the ith point on camera j.
By bundle adjustment we minimize the reprojection error with respect to 3D
points bi and camera parameters aj . This is a non-linear minimization problem;
it can be solved by using iterative methods such as Levenberg-Marquardt.

3.4 Obstacle Detection

Monocular or stereo vision, often together with further sensors, provides input
data for detecting vehicles, pedestrians, or further obstacles on the road [26].

For example, when applying stereo vision, detected points in the 3-dimensional
scene need to be analysed for being just noise or actually obstacles on the road.

Figure 7: Top: Use of a color key (di↵erent to the one shown in Fig. 4) for show-
ing depth data calculated by stereo matching. Bottom: Illustration of calculated
stixels (based on the depth data illustrated above, forming an occupancy grid),
groupings of stixels, and of estimated motion for such stixel groups. Courtesy
of Uwe Franke
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A detected local cluster of points at some height above the road define a stixel
[27], which is a straight cuboid standing on an assumed ground plane and lim-
ited in height by the detected local cluster of points. Regular stixels are formed
when assuming cuboids whose lower faces define a regular grid on the ground
plane. See Fig. 7. Stixel classification can then aim at identifying basic object
shapes like car, bus, tra�c sign, or construction cone. Stereo vision also sup-
ports object detections on non-planar roads [28]. Generic object detection is
studied in [29, 30], showing a good performance on [15].

Monocular object detection [31] has also been intensively studied for cases of
monocular video recording (e.g. if attaching a mobile device to the windshield
of a vehicle). [32] infer a vehicle (driving in front of the ego-vehicle) from
the shadow underneath. [19] suggest a data-fusion approach using a boosted
classifier (based on global Haar-like features) (in conjunction with corner and
line features, and virtual-symmetry of tail lights of vehicles) to e↵ectively detect
vehicles, with a particular focus on also covering challenging lighting conditions.
See Fig. 8. The book [33] discusses the detection of pedestrians in a tra�c
context; see also [34] and the database [35]. For a survey paper on pedestrian
protection, see [36].

3.5 Detection and Tracking

There are static (i.e. fixed with respect to the Earth) or dynamic objects in
a tra�c scene which need to be detected, understood, and possibly further
analysed. Typically, those objects are either the ego-vehicle itself, other on-
road vehicles (e.g. also bicycles or children trolleys), or pedestrians.

Vehicle Tracking. Vehicle tracking is an important component of collision
avoidance systems. By analysing trajectories of visible vehicles, in comparison
to the trajectory of the ego-vehicle, it is possible to understand the danger of
an imminent crash (e.g. to be used for triggering autonomous braking).

Tracking by repeated detection can use techniques as mentioned above in the
section on vehicle detection. In general it is of benefit to use stereo vision results
(i.e. disparity or depth values) in a vehicle tracking procedure [37], and not only
monocular data.

Vehicle tracking is typically easier to perform than pedestrian detection and
tracking; the shape and appearance of vehicles is easier to be modelled (e.g. by
the appearance of lights, bumpers, horizontal line segments, density of detected
corners, or visual symmetry; see [19]). Vehicle tracking is di�cult due to occlu-
sions, di�cult lighting (e.g. light artefacts due to trees and intense sunshine),
”ghost appearances” (e.g. reflected car headlamps on a wet road), and many
more possible issues. Learning of ensembles of models has been proposed in
[38], using data of [15] for training and testing. Supervised learning enhances
the creation of a discriminative part-based model (DPM) from recorded video
data [39, 40].

Pedestrian Tracking. Pedestrian detection, tracking, and understanding are
in general still very challenging subjects. The task simplifies if only considering
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Figure 8: Monocular vehicle detection under challenging lighting conditions.
Detected vehicles are also labelled by monocular distance estimates. Courtesy
of Mahdi Rezaei

pedestrians crossing the road, and not also pedestrians being close to the road
(e.g. for understanding whether a pedestrian will step in the next moment
on the road, or whether a child might possibly throw a toy on the road). A
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Figure 9: Two frames of a sequence of detected pedestrians using a RDF. There
are a few false-positives (on the right in both frames), and also a few overlapping
true-positive bounding boxes (in the upper frame for the person on the right).
Further processing needs to eliminate false-positives, and to unify overlapping
boxes. Courtesy of Junli Tao

straightforward approach for tracking is by repeated detection, possibly refined
by taking previous detection results into account (up to Frame t) when analyzing
Frame t+ 1.

A standard procedure for detection is as follows: at first a bounding box (a
window) is detected as the region of interest (RoI) which possibly contains a
pedestrian. Apply a classifier for this bounding box for detecting a pedestrian.
This classifier can be based on a histogram of gradients (HoG) for the bounding
box [41]; after deriving HoG descriptors, the classifier uses those for deciding
about the presence of a pedestrian. It is also possible to use such HoG descrip-
tors within a random decision forest (RDF) [42] for performing the classification
task.

For example, if the bounding box arrives at any leaf in the used forest which
has a probability greater than 0.5 for the class “pedestrian”, then the box may be
classified this way (by this simple maximum-value rule). In case of overlapping
bounding boxes, results may be merged into a single detection or box. See
Figure 9.

Performance evaluation of pedestrian detection or tracking can be based
on image data with manually identified ground truth; see, for example, the
Caltech Pedestrian Detection Benchmark at www.vision.caltech.edu/Image_
Datasets/CaltechPedestrians/. The TUD Multiview Pedestrian and the
CCV Pedestrian databases can be used for body direction classification; they
are available at www.d2.mpi-inf.mpg.de/node/428 and ccv.wordpress.fos.

auckland.ac.nz/data/object-detection/ for free download.
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3.6 Detection of Infrastructure Key Elements

The road, marked lanes, and tra�c signs define the key elements of the tra�c-
related infrastructure of the environment.

Road Detection. Road detection is often considered as a pre-processing
module prior to lane analysis [43], especially in cases of non-highway driving.
[44, 45] discuss ways for modelling the visible road surface in front of the ego-
vehicle.

The road might be identified by curbs, a particular surface texture, by a
space between parked cars on both sides of the road, but also by very specific
properties. See Fig. 10 for two extreme cases. In the case of roads in tunnels,
walls and ground-manifold may have the same texture, and di↵er by there sur-
face gradients. In case of an unpaved road in a desert, the texture of the road
surface may continue on the left or right, and only traces of previous driving
may indicate the actual location of the road.

Figure 10: Left: Roads in tunnels (below the historic centre of Guanajuato).
Right: Unpaved road near Salta in Argentina. Courtesy of authors of [46]

Lane Analysis. In a general sense, a lane is defined by su�cient width for
driving a road vehicle; it is the space between a left and a right lane border.
Many di↵erent mathematical models have been used for defining lanes (e.g.
analytically defined curves or sequences of individual border points following
some kind of systematic pattern). In the simplest case, straight segments are
used for describing zero-curvature lane borders, and second order curves or
clothoids for non-zero-curvature lane borders.

There is already a vide variety of solutions available for lane analysis; see
[46, 47, 48, 49, 50].

Lane detection is basically “solved” for scenarios during driving where lane
markings, lane geometry, and visibility conditions are reasonable, but there
is still a need for studying lane-border detectors or trackers for challenging
scenarios (e.g. underground road intersections, unpaved roads, or very wide
road intersections without any lane marking).

There is also not yet any satisfying automatic evaluation available for quan-
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Figure 11: Three examples for data provided by [52] where a used lane detector
follows its strategy for detecting lane borders due to temporal inference, but
where one given frame alone would be insu�cient for a judgement whether the
detected border is correct or not. The three images show detected lane borders
composed of sequences of individual points. Courtesy of Bok-Suk Shin

tifying the performance of a lane detector. For example, we could claim that
“lane borders are correctly detected if they are within an error of at most 5 cm to
the true lane border”. What exactly is the “true lane border”? How to measure
for cases as illustrated in Fig. 11? [15] o↵ers a few manually-labelled frames for
evaluating lane detection. Synthetic data for evaluating lane border detectors
are available on [51].

The detection of lane borders is sometimes even a challenge for human vision.
Lane borders can often not be identified in an individual frame; see Fig. 11.
Additional knowledge such as the width of the car or the previous trajectory of
the car can be used for estimating the continuation of lanes.

[52] proposes a semi-automatic technique for generating ground truth for lane
detection. They use time slices, being defined by taking a specified single row
with detected lane locations in subsequent frames, and fit splines to the resulting
sequences of individual points in such time slices. By specifying di↵erent rows,
di↵erent time slices are created. The proposed approach works reasonably well
on clearly-marked roads. The involved interaction comes with the risk of human
error and limited usability.

Tra�c Signs. Road signs are tra�c signs (stop sign, speed sign, etc.) or any
form of written (directions, weather conditions, closure times of a lane etc.) or
graphically expressed information (pedestrian crossing, speed bump, icons, etc.)
on or near the road which are of relevance for driving a vehicle on this road.
Classes of road signs can define one particular module of a complex computer-
vision system for ego-vehicle control. For a survey on tra�c sign detection, see
[53].

A standard approach [54] can be briefly sketched as follows: possibly pre-
process an image (e.g. by mapping a colour image into HSV colour space [1]),
detect geometric shapes (circles or polygons) which are potential candidates for
a tra�c sign (possibly using colour as a guide as well), extract features, and
compare those with features of a data base of tra�c signs.

Solutions can be classified in general by focusing either more on the use
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Figure 12: Left: Detected relevant features in an input image. Middle: Detected
sign due to voting by SIFT features which passed the potential location filter.
Right: Diversity of the appearance of the P30 sign in New Zealand. Courtesy
of Feixiang Ren

of colour, or more on the use of shape for the initial detection. For example,
circles can be detected by using a Hough transform [1] or a radial-symmetry
approach [55]. Recorded images are subdivided into regions of interest (i.e.
left or right of the road, or on top of the road) for having size-priors for tra�c
signs in those regions. See Fig. 12, left, for a case when detecting image features
uniformly, all over the image, in the middle when restricting the search to regions
of interest, and on the right for illustrating the diversity of tra�c signs. Tra�c
sign categorization is a main subject in [54].

The authors of [56] suggest an evaluation methodology for tra�c sign recog-
nition by specifying measures for comparing ground truth with detected signs.
Of course, before applying this methodology the ground truth needs to be avail-
able, and so far it is provided manually. GPS and e-maps allow us to compare
locations of detected tra�c signs with mapped locations of signs.

Free Space Detection. Free space is the area where the ego-vehicle may
evolve safely. [57] is an example of early work for detecting free space based on
color analysis.
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More recent solution in VB-DAS use stereo vision for calculating occupancy
grids [44, 45, 58]. See Fig. 7, bottom, for a stixel-illustration of an occupancy
grid.

4 VB-DAS Examples

A tra�c scene is composed of the road (with lane markings, pedestrian cross-
ings, speed bumps, cavities, and so forth), road furniture (e.g. tra�c signs,
handrails, or construction site blocks), various types of obstacles (driving vehi-
cles, pedestrians, rocks, parked vehicles, and so forth), and also by tra�c-related
buildings, tunnels, bridges, and so forth.

A complex scene analysis needs to understand the current tra�c-related com-
ponents, their motion, and their possible near-future impacts on the ego-vehicle
or even the possible impacts on other tra�c participants. Before discussing traf-
fic scene-analysis tasks for cameras which point outwards from the ego-vehicle,
we consider at first a few tasks when pointing a camera towards the driver (for
understanding awareness).

4.1 Driver Monitoring

Cameras are not the only way for driver monitoring. For example, see [59] for
a tactile solution using an embedded sensor in the steering wheel. Cameras
are not only useful for understanding the state of the driver (e.g. drowsiness
detection) but in particular also appropriate for analysing the viewing direction.

Face and eye detection [60], or head-pose analysis [61] are basic tasks in this
area. The viewing direction can be estimated on head pose analysis; eye gaze
analysis [62] is an alternative way for viewing direction estimation which also
covers eye state analysis (i.e. percentage estimate for being open or closed).
Challenging lighting conditions still define unsatisfactorily-solved scenarios; for
example, see [63] for such scenarios. Foot gesture or visual hand motion patterns
are further possible indicators for driver monitoring [64, 65].

Driver awareness can be defined by relating driver monitoring results to
environment analysis for the given tra�c scenario. The driver not only needs to
pay attention to driving; eye gaze or head pose [19] should also correspond (for
some time) to those outside regions where safety-related events occur. Here,

Figure 13: Face detection, eye detection, and face tracking results under chal-
lenging lighting conditions. Courtesy of Mahdi Rezaei
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head pose or face detection is then typically followed by eye detection and an
analysis of the state of the eyes or eye-gaze detection. See Fig. 13.

Figure 14: Detected eyes in a (supposed to be) driver’s face based on defining
a region of interest within a detected face for expected eye locations. Right:
Examples of local Haar wavelets. Courtesy of Mahdi Rezaei

In the applied face or eye detection technique [60], a search window scans
through the current input image comparing intensities with local Haar wavelets;
see Fig. 14, right, for examples of such wavelets. [63] also introduces global Haar
wavelets, motivated by challenging lighting conditions (as illustrated in Fig. 13).
Figure 14 also illustrates the use of a head model for identifying eye regions.

4.2 Speed Adaptation

Now we mention a first task for outward-recording cameras. Intelligent speed
adaptation (ISA) can be based on knowing the currently-applying speed limit,
road conditions, the distance to the vehicle in front, and further tra�c-related
events (e.g. children playing close to the road often require a speed reduction).

Basic information for ISA is available in digital maps via GPS. Vision tech-
nologies are adequate for collecting on-site information. The detection and
interpretation of speed-signs [66] or road-markings [67] are examples of tra�c-
sign analysis, and the evaluation of road conditions is part of road environment
analysis (see related paragraphs below).

4.3 Queuing

An automated queue assistant (AQuA) applies in congested tra�c situations on
highways; see Volvo’s program for AQuA design in [68]. For example, it is of
interest for a truck convoy to maintain constant speed and distances between
trucks. But it is also of importance for any congested tra�c situation.

An AQuA application should ideally combine longitudinal distance control
(to the preceding vehicle) for adjusting speed and lateral control for steering
supervision (i.e. distance to side vehicles). Driver monitoring (see paragraph
above) is also of significance for understanding driver awareness (drowsiness
or inattentiveness). Lane detection and analysis (e.g. of lane curvature; see
paragraph above) is of importance for proper positioning control of the vehicle.

For example, a truck convoy may be grouped for automated driving into a
platoon, with the goal to reduce inter-truck distances for increasing the capacity
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of roads.

4.4 Parking

Automated parking requires in general a wider field of view than blind spot
surveillance, and a full 360� recording supports both applications [69, 70].

Autonomous parking systems use typically multiple sensors such as ultra-
sonic or close-range radars, or laser scanners (implemented in the front and rear
bumpers of the car), and vision sensors. The system needs to detect a possi-
ble parking space, and needs to guide the vehicle autonomously into this space.
Note that bumper-implemented sensors do have a limited field of view (i.e. close
to the ground).

Automated parking is currently extended to solutions for parking autonomously
in a parking house with the drop-o↵ and collection point at the entrance of the
parking house. Vision sensors play an essential role in such an application.

4.5 Blind Spot Supervision

At the beginning of the article we already mentioned blind spot visualization.
More advanced applications analyse the video data recorded for blind spots,
and communicate only the necessary information (e.g., there is another vehicle
on the left) to the driver [71]. For example, the Blind Spot Information System
(BLIS), introduced by Volvo in 2005, produced just an alert if another vehicle
was detected left or right of the ego-vehicle (by analysing recorded video); see
[72].

4.6 Lane Departure Warning

Lane analysis (as discussed above) aims in particular at providing information
about lane changes, if a driver is interested in this type of support (e.g. truck
or long distance bus drivers).

4.7 Wrong Lane Detection

Wrong-roadway related accidents lead only to a relatively small number of ac-
cidents, but with a high risk of being a heads-on crash. About 33.6 percent of
the world population drives on the left-hand side.

Lane-positioning algorithms based on e-maps and GPS [73, 74, 75, 76] are
related to wrong-lane detection; this map matching approach is not yet accu-
rate due to existing variance in (standard) GPS data. A lane-positing module
together with a lane-detection and tracking module allow us to design a wrong-
lane detection system.

The location, provided by GPS, can be matched with an available e-map,
for instance, an openstreet map. The number of lanes and lane direction(s) at
the current location needs to be read from this map. Apart from using GPS
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Figure 15: Three detected lanes in a country driving on the left-hand side.
Matching with an available e-map simplifies the decision about the lane the
ego-vehicle is currently driving in. Courtesy of Junli Tao

and an e-map, further sensors such as onboard odometer or gyroscope can be
used to refine the accuracy of ego-vehicle positioning on a road [76].

A multi-lane-detection result (e.g. as shown in Fig. 15) is mapped onto a
current lane configuration, thus supporting (besides a detection of the central
marking in the middle of the road) the decision in which lane the ego-vehicle
is currently driving in. Methods as described in [77, 78, 79] address multi-lane
detection. Lane confidence measures can be used to weight detected lanes for
producing stable detections [80].

A first assistance system for the detection of driving on the wrong side
of the road by reading no-entry signs of motorways is reported in [81], and
[82] analyzes motion patterns in highway tra�c for understanding wrong-lane
driving. [80] propose a system for wrong-lane driving detection by combining
multi-lane detection results with e-map information.

4.8 Intelligent Headlamp Control

Adaptive LED headlamps adjust the individual light beams according to the
visible tra�c scene [83]. Each light beam (of each addressable LED emitter)
may vary between low-aimed low beam and high-aimed high beam. The beam
is adjusted for maximizing the seeing range for the driver in the ego-vehicle, but
with the constraint to avoid dazzling drivers in other vehicles or pedestrians.

Cameras in the ego-vehicle are used for vehicle and pedestrian detection (for
these topics see later in this chapter) for changing permanently a glare-free high
beam pattern of the headlamps.
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5 Future Developments

Vision technologies, in combination with further technological developments,
o↵er various new opportunities to improve safety and comfort; we mention a
few.

5.1 Driver-Environment Understanding

Sections above discussed the understanding of the driver (i.e. inward-recording
for analysing awareness, eye gaze, and so forth), and also various modules of
VB-DAS for outward-recording. The obvious next step is to correlate driver
understanding with tra�c scene understanding, for example for warning about
a detected issue for which it appears that the driver did not yet pay attention
[19, 68]. For example, the virtual windshield (i.e. a head-up display) appears
to be a good implementation for such a warning.

Figure 16: Holistic scene understanding and driver monitoring using multiple
sensors for inward and outward recording. Driver awareness can be modelled
based on a combined analysis of those data. Courtesy of Mohan Trivedi

Approaches for VB-DAS which combine looking-in and looking-out tech-
niques provide significant benefits for realizing active safety functionalities; see
[84, 85, 86, 87, 88] and Fig. 16.
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5.2 Inter-Car Communication

Inter-car communication (a non-vision technology) supports the better under-
standing of large-scale road environments, not apprehendable from the per-
spective of a single car. The approach is also known as car-to-car (C2C). It
is expected that these communication networks will contain vehicles in a local
neighbourhood but also roadside sources as nodes (C2I = car-to-infrastructure).

Communicated information will include data collected via VB-DAS, and also
data collected via stationary cameras along the road. Inter-car communication
will be part of expected intelligent transport systems (ITS), defining the general
context of future transportation.

5.3 Autonomous Driving

Autonomous driving is often identified as being the ultimate goal when de-
signing VB-DAS [89, 90]. There are already convincing demonstrations that
autonomous driving is possible today using, e.g., dominantly stereo vision [91]
integrated into a car, or using dominantly a laser range-finder [92] mounted on
top of a car (together with very accurate e-map and GPS data). In both cases,
environment and weather conditions have to satisfy particular constraints for
guaranteeing that the systems work accurately.

5.4 Road Environment

When analyzing the road environment, we are typically interested in detecting
and interpreting road furniture, pedestrian crossings, curbs, speed bumps, or
large-scale objects such as an entrance into a tunnel, or a bridge. Accurate
e-maps and GPS provide information about the expected environment; cameras
and computer vision can be used for detecting unexpected changes in such an
environment.

Ground-level recording and 3D reconstruction (i.e. only using cameras in
vehicles, not also aerial recording) is a subject, for example, in [93, 94, 95], all
using multiple cameras while recording road sides in a single run when moving
the cameras in the ego-vehicle basically parallel to the road borders into one
direction only (i.e. without any significant variations in the path).

3D road-side visualization or 3D environment modelling are applications
which still lie beyond the current interest in VB-DAS. A 3D reconstruction
from a moving platform [93], possibly in combination with 3D reconstructions
from a flying platform such as a multi-copter, can be used for an even more
accurate environment model compared to today’s planar e-maps.

3D surface data, reconstructed at time t, need to be mapped into a uniform
world-coordinate system. Generating accurate surface models by mapping re-
constructed 3D data requires a very high accuracy of ego-motion analysis. This
accuracy is currently not yet available. This is in particular apparent when try-
ing to unify results from di↵erent runs through the same street [96]. See Fig. 17
for 3D results from a single run.
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Figure 17: Reconstructed cloud of points (left) and surface (right) based on a
single run of the ego-vehicle. Courtesy of Yi Zeng

6 Conclusions

The vehicle industry world-wide has assigned major research and development
resources for o↵ering competitive solutions for VB-DAS. Research at academic
institutions needs to address future or fundamental tasks, challenges which are
not of immediate interest for the vehicle industry, for being able to continue
to contribute to this area. The chapter briefly reviewed work in the field of
computer vision in vehicles.

Computer vision can help to solve true problems in society or industry,
thus contributing to the prevention of social harms or atrocities. Academics
identify ethics in research often with subjects such as plagiarism, competence, or
objectivity, and a main principle is also social responsibility. Computer vision in
road vehicles can play, for example, a major role in reducing casualties in tra�c
accidents which are counted by hundreds of thousands of people worldwide each
year; it is a very satisfying task for a researcher to contribute to improved road
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safety. VB-DAS also contribute to a better driving comfort in modern cars.
Autonomous driving is a realistic goal for some particular tra�c situations in
developed countries, but not yet expected as a general solution worldwide in
the foreseeable future.
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