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Abstract. Applying real-time segmentation is a major issue when pro-
cessing every frame of image sequences. In this paper, we propose a
modification of the well known graph-cut algorithm to improve speed
for discrete segmentation. Our algorithm yields real-time segmentation,
using graph-cut, by performing a single cut on an image with regions of
different resolutions, combining space-time pyramids and narrow bands.
This is especially suitable for image sequences, as segment borders in one
image are refined in the next image. The fast computation time allows
one to use information contained in every image frame of an input image
stream at 20 Hz, on a standard PC. The algorithm is applied to traf-
fic scenes, using a monocular camera installed in a moving vehicle. Our
results show the segmentation of moving objects with similar results to
standard graph-cut, but with improved speed.

Fig. 1. The images show the flow field of image features in a traffic scene and a seg-
mented moving object. The image on the right shows the multi-resolution graph struc-
ture obtained using the approach in this paper for real-time segmentation.

1 Introduction

Separating structures of interest from the background is a well known problem
in the computer vision community. The goal of such segmentation is to reduce
the representation of an image into meaningful data. Segmentation tasks include;
identifying anatomical areas of interest in medical image processing [13], optimal
contour finding of user defined foreground and background image areas [14, 19],
and segmenting areas of similar motion for machine vision [20]. The goal of this
paper is the separation of moving and stationary objects using a monocular
camera installed in a moving vehicle. Due to the motion of the vehicle, simple
background subtraction does not work in this case, because (apart from the
focus of expansion) the whole image changes from frame to frame (see Figure 1).



This is also different to motion segmentation, namely the grouping of image
regions which are similar in their motion, because for some constellations, such
as motion of non-rigid objects, no parametric motion field exists. Last, the binary
segmentation needs to be performed in real-time on video streams.

We formulate an energy function based on the boundary length, the number
of foreground pixels, and the assigned probabilities of a pixel being foreground
(moving object) or background (stationary world). Several techniques have been
developed for image segmentation [15]. Two methods dominate the domain of
segmentation by energy minimization in the image domain: differential meth-
ods, such as LevelSets [3, 12], and discrete methods. Among the discrete meth-
ods, the graph-cut algorithm [8] finds the global optimal energy in polynomial
time. However, the time to compute the energy is still far from real-time for
many applications. Real-time performance is important when working on im-
age streams, where the information in every frame has to be processed. This
is especially important in the field of motion segmentation where small time
steps between consecutive images is important, as motion estimation is based on
gradient descent and the displacement of pixels is crucial [4, 18].

The contribution of this paper is a modification of the input images, such
that the graph-cut gains real-time performance on image sequences. We reduce
the dimension of the search space for the segmentation, by executing the graph
cut algorithm on different scales of the input image, in one single cut. The orig-
inal image is segmented at a low resolution, then segmentation boundaries are
refined throughout the image sequence. The cut is still optimal on the modified
input images, such that no repeated iterations on the same image are required.
Experimental results prove, that for most problems, where the segment bound-
ary consists only of a small set of image pixels, this algorithm yields real-time
performance on standard computer hardware.

The next section contains a literature overview, investigating approaches for
speeding up the graph-cut algorithm. Our novel approach is described in Sec-
tion 3. Results and comparisons to the algorithms described in literature are
found in Section 4. The paper closes with conclusions and an outlook on future
work.

2 Literature Overview

Graph-cut for image segmentation was first introduced by [5] for image restora-
tion. Its impact on the computer vision community rapidly increased after the
publication of [1], where an algorithm especially designed for the segmentation
of image domains was proposed. The algorithm boosted average segmentation
times from several minutes to a few seconds for usual image domains, where
every pixel yields one node in the resulting graph. However, most research on
graph-cut focuses on single images and not on real-time image streams, where
computation time becomes crucial. In our experiments we use frame rates of up
to 25 frames per second, demanding accordingly fast segmentations. In the re-
maining part of this section we will explain the graph-cut algorithm and review
techniques to speed up graph-cut computation time.



2.1 Graph-Cut

The image being segmented is modelled as a weighted undirected graph. Each
pixel corresponds to a node in the graph, and an edge is formed between two
neighbouring pixels. We use an N4 neighbourhood where each pixel has four
neighbours (upper, lower, left, and right) representing the Manhattan metric.
The weight of an edge is a measure of similarity between end nodes (in this case
pixels). We use the grey value difference of the end nodes as similarity measure.
With the maximal grey value Imax and a scale factor c the weight of an edge
connecting x and y, ex,y is:

w (ex,y) = c ·

(
1−

(
I(x)− I(y)

Imax

)2
)

. (1)

Additional edges connect nodes with a source and sink. They have weights cor-
responding to a node’s foreground and background probability. To detect and
segment moving objects we use the motion constraints described in [6]. The
constraints are based on a motion analysis of individual tracked image features.
We use a real time implementation of the tracking described in [17]. The tracked
features are 3D reconstructed. A point is detected as moving if its reconstruction
is identified as erroneous by checking whether it fulfils the constraints:

– Epipolar Constraint: This constraint ensures that the viewing rays (join-
ing projection centres and the 3D point) from both cameras must meet. If
this constraint is violated, no reconstruction is possible and the 3D position
of the point has changed between both frames of the sequence.

– Positive Depth Constraint: If viewing rays intersect behind the camera,
the 3D point must be moving.

– Positive Height Constraint: All static points in traffic scenes lie above
the ground plane. If viewing rays intersect under the ground plane, the 3D
point must be moving.

For details on how to exploit these constraints, refer to [6]. For every tracked
point an error measure is computed, measuring the distance in pixels, to the next
valid point fulfilling the above constraints. This error value serves as the weight
for an edge from tracked pixels to the source (background) or sink (foreground).
In our experiments we use w = (1 + exp(6− 3x))−1.

The optimal s-t (source to sink) separating cut of the graph is one that
minimizes the sum of the weights of the edges that are removed (referred to as
energy), such that no more connections between source and sink exist. Figure 2
shows the model of a graph and its optimal cut.

2.2 Banded Cut on Image Pyramids

The simplest way to decrease computational time is using images of lower res-
olution, thus reducing the number of nodes and edges. However, this is at the
expense of less segmentation accuracy, especially along the boundaries. In [9]



Fig. 2. The plot shows the segmentation of an image by performing an s-t cut. The
pixels correspond to nodes of the graph (blue). Edges for foreground and background
pixels connecting these pixels with the source and sink respectively have costs 1.0.
Edges between neighbouring pixels, connecting their corresponding nodes in the graph
have costs 0.3 or 0.1, depending on the grey value difference of the two pixels. The
minimal s-t separating cut with cost 3.0 is given by the red boundary. Although we
use sparse data representing the foreground and the background, one connected region
with it’s boundary along a grey value difference is found.

the authors propose the use of image pyramids and refine the boundaries on
lower pyramid images as illustrated in Figure 3. When image features are small,
they might not be detected on lower pyramid levels as they are smoothed out.
One possibility to account for these changes was proposed in [16]. An additional
Laplace pyramid is built, which represents the lost information from the im-
age down-sampling process in the high frequency spectrum. If the values in the
Laplace image exceed a certain threshold, additional pixels are introduced into
the graph. The drawback of pyramid approaches is the inherent iterative pro-
cess, where consecutive graph-cut steps on lower pyramid levels have to wait for
the preceding step to finish. This causes the undesired effect of the graph-cut
being carried out several times on the same input image, once for every pyramid
resolution.

Fig. 3. The figure shows an example of an image pyramid (left). A full graph cut
is performed on the highest pyramid level and the result is iteratively propagated
downwards, then refined in a band around the result of the upper pyramid level.



2.3 Temporal Banded Cut

Recall that we are interested in detecting moving objects. If the frame rate
is high, this implies that segmentation boundaries in consecutive images are
similar. Instead of predicting the segmentation boundary from the highest to
lowest pyramid level, the segmentation of the current image is used as a hint
for the cut of the next image in the sequence, and refined in a band around
the segmentation border. This is done by [10] and [11]. The major drawback of
this method is that essentially only tracking is performed, therefore new objects
that appear are only detected if they are within the band width of the boundary
for existing objects. In the papers, a human initialization step is required. We
propose to solve this problem by a temporal prediction on pyramids.

2.4 Temporal Prediction on Pyramids

Instead of propagating segmentation boundaries from a higher pyramid level
onto a lower pyramid level of the same image, this propagation is done in the
subsequent image of an image sequence (green arrows in Figure 4). Using the as-
sumption that the segments motion in the image is roughly known, this combines
the detection in the pyramid scheme and the temporal prediction (tracking) of
segmentation boundaries. Another advantage of this method is that the graph-
cut algorithms for the single pyramid levels can be executed in parallel, resulting
in an improved computational time when using parallel processing computers.

Fig. 4. This shows the temporal prediction on pyramids. Instead of propagating results
down (red), or from one time instance to another on the same pyramid level (blue), a
combined approach propagates results between frames and pyramid levels to combine
both real-time detection and real-time tracking.

Other techniques to speed up the segmentation algorithm have been presented
by [7]. The authors use the search tree of the old segmentation as a hint for the
current segmentation. In [2], an approximation of the energy is proposed which
yields faster convergence. Both approaches are applied on a graph without chang-
ing its topology. In the following section, a novel approach is presented related to
temporal prediction on pyramids, but performing a single cut on an image with
multiple resolutions. This is related to surface approximations, where primitives
may consist of different scales, such that a good approximation is achieved with
the constraint, to use a minimal number of primitives (e.g. 3D surface modelling).



3 Multi-Resolution Image

If parallel processing is not possible, the temporal prediction on pyramids yields
no computation time gain compared to the plain vanilla pyramid implementation
of the graph-cut algorithm. A closer look at the temporal prediction also reveals
that situations occur, where the same segmentation boundary is found on every
image level, such that a prediction onto the next time instance creates similar
problems as using a full pyramid.

The idea to solve this issue is to take the highest pyramid image (lowest res-
olution) and iteratively refine the pixels into 4 sub pixels if they are within the
segmentation border of the lower pyramid level (Figure 5 shows the result; see
also Figure 6 for a schematic illustration). The resulting image consists of differ-
ent resolutions representing different pyramid layers, thus different segmentation
accuracies. A high resolution is obtained at segmentation boundaries (inhomo-
geneous background / foreground regions) and a low resolution at homogeneous
image regions. In the next section we will show how to obtain a graph repre-
sentation of a multi-resolution image. The advantage is obvious, as only a single
cut has to be performed on the multi-resolution image.

Fig. 5. The left image shows the original frame with a segmentation overlay. The right
image shows a close-up of the calculated multi-resolution image. Areas around segmen-
tation boundaries have high resolution and in the other areas, pixels are combined to
provide a low resolution.

3.1 Multi-Resolution Graph-Cut

The mapping of the multi-resolution image onto the graph is straightforward. In
the first frame t, a coarse grid is created (see Figure 6). Every grid section is a
node, every node has an edge from the source and one to the sink. Pixels within
the same grid are combined by adding their weights from the source and to the
sink. The remaining edges, for each node, are created from the N4 boundary
grid nodes (identified by any red pixel touching a blue grid line in Figure 6).
The edge values are based on the energy function mentioned in Equation 1. The
weights of all pixel edges connecting two grid cells are summed to obtain a single
edge weight. The graph-cut is performed on the coarse grid, providing a rough
segmentation.

In the next time frame (t + 1), the grid sections on the boundaries of the
segmentations are split into 4 subsections. The old node (grid section) and cor-
responding edges are removed from the graph and the new nodes are added.



Finally, the new edges are added to the graph. New edges can be seen in Fig-
ure 6 as any red node that is touching a blue grid line. This process is then
refined again in the next frame (t + 2). This will happen iteratively over time
until the segmentation boundary is refined to single pixel detail.

Fig. 6. The graph shows the iterative segmentation approach of the multi-resolution
graph-cut. The dashed line shows the edge of the true segmentation. Blue grid lines
identify graph sections (nodes). Red dots touching a blue grid line indicate edges.

As we are segmenting image sequences, we need to deal with the implicit
movement within the images over time. The movement of the segmentation area
can be estimated by using the tracked features used for the motion constraints.
In this case, a segmentation boundary in frame (t + 1) is estimated from frame t
using the motion constraint data. The segmentation in frame (t+1) is performed
as above, using the estimated boundary position. The graph-cut is performed
over the entire image, still allowing new features to be detected.

Another issue that needs to be dealt with when using this approach is when
there are refined areas in the image, that are not located on a segmentation
boundary of the subsequent frame. When this happens, the process is reversed
over the involved homogeneous grid cells, reverting to a lower resolution.

Figure 7 shows a comparison of our algorithm in terms of minimal cut costs,
identifying a minor loss in minimization. Note: Do not mix up the cut costs,
which deals with the energy minimum (see Figure 7), and the computational
cost which is discussed in the results section.

Fig. 7. The plot compares the calculated minimum cut costs for a VGA (640×480 pix-
els) test sequence of 25 images. The minimum cut cost of the multi-resolution method
increases slightly with larger grid size and is close to the cost of the full graph-cut.



4 Results

In this result section we show qualitative segmentation results of moving objects
and a quantitative comparison of computation time for different speed improve-
ment techniques for graph-cut segmentation. The segmentation and tracking
results show that we are able to detect rigid objects, such as other vehicles (see
Figure 8). The segmentation is meaningful and finds the moving object in the
image. A close look reveals that vehicles driving away from the camera, at large
distances, are not detected (Figure 8 upper right). This is due to the motion
constraint, which is too weak for such situations. The error for each track is
shown in the image demonstrating that sparse data is used for segmentation.
Note that in the experiments, the camera is installed in a moving vehicle, so
simple background subtraction is not possible.

Fig. 8. Segmentation of moving objects using the multi-resolution graph-cut method
and constraints on tracked features (20 frames per second on VGA images). The seg-
mentation boundary proves to be accurate keeping in mind that sparse features are
used. Outliers are rejected and the moving objects are verified.

While the example above could be solved by motion segmentation with para-
metric motion fields, the accurate segmentation of non-rigid motion would not
be possible with such an approach. However, by using the motion constraint,
we are able to segment a moving person quite accurately, as can be seen in Fig-
ure 9. The multi-resolution method generates segmentation results close to those
obtained using the full graph-cut algorithm.

Fig. 9. Segmentation of non-rigid motion using the multi-resolution method in com-
parison to the full graph-cut method. The left image shows the multi-resolution graph
used for segmentation, the middle image shows the segmentation overlay on the origi-
nal image. The right image shows the results using original graph-cut, yielding similar
results.



Figure 10 compares computation time for the multi-resolution method and
full graph-cut. In addition, the pyramid version and the temporal prediction
techniques (other techniques used to speed up graph-cut computation time) are
included in the runtime comparison. As the temporal banded cut is used for
tracking and not detection, the resulting boundary from the multi-resolution
method was provided as an initialization in every frame. The sequence used
had increased movement in the scene near the end, this explains the increase in
computational time, especially noticeable using original graph-cut.

The multi-resolution method performed best on our test sequence. The re-
sults confirm that run times under 50 ms are achieved, such that real time seg-
mentation becomes possible. The speed improvements using the multi-resolution
approach, compared to the original graph-cut, lies between a factor of 10 and
20. The right hand graph in Figure 10 shows the different run times using de-
creasing maximum grid-size. Note that a max grid-size of 1 pixel corresponds to
the original graph-cut.

Fig. 10. The left plot shows the runtime comparison of different graph-cut implemen-
tations (on a Pentium IV 3.2 GHz). The right plot shows average runtime comparisons
for the multi-resolution approach using different maximum grid sizes.

5 Conclusion and Future Work

In this paper we presented a novel method to combine tracking and detection in
a real-time graph-cut approach. The multi-resolution method outperforms the
standard graph-cut in computation time, on average, by a factor of 10. It also
outperforms other speed improvement techniques, but by a smaller factor. The
future ideas for this approach are to expand the algorithm to other areas, such
as:
– The usage of the algorithm on other segmentation problems (e.g. stereo and

general motion segmentation into segments of parametric (affine) motion).
– The generalization of the approach for 3D volumes.
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