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Abstract. Intelligent vehicle systems need to distinguish which objects
are moving and which are static. A static concrete wall lying in the path
of a vehicle should be treated differently than a truck moving in front
of the vehicle. This paper proposes a new algorithm that addresses this
problem, by providing dense dynamic depth information, while coping
with real-time constraints. The algorithm models disparity and disparity
rate pixel-wise for an entire image. This model is integrated over time and
tracked by means of many pixel-wise Kalman filters. This provides better
depth estimation results over time, and also provides speed information
at each pixel without using optical flow. This simple approach leads
to good experimental results for real stereo sequences, by showing an
improvement over previous methods.

1 Introduction

Identifying moving objects in 3D scenes is very important when designing in-
telligent vehicle systems. The main application for the algorithm, introduced in
this paper, is to use stereo cameras to assist computation of occupancy grids [8]
and analysis of free-space [1], where navigation without collision is guaranteed.
Static objects have a different effect on free-space calculations, compared to that
of moving objects, e.g. the leading vehicle. This paper proposes a method for
identifying movement in the depth direction pixel-wise.

The algorithm, presented in this paper, follows the stereo integration ap-
proach described in [1]. The approach integrates previous frames with the cur-
rent one using an iconic (pixel-wise) Kalman filter as introduced in [10]. The
main assumption in [1] was a static scene, i.e. all objects will not move w.r.t.
ground. The ego-motion information of the stereo camera is used to predict the
scene and this information is integrated over time. This approach lead to robust
free-space estimations, using real-world image sequences, running in real-time.

This paper extends the idea of integrating stereo iconically to provide more
information with a higher certainty. The extension is adding change of dispar-
ity in the depth direction (referred to in this paper as disparity rate) to the
Kalman filter model. For a relatively low extra computational cost, movement
in the depth direction is obtained without the need for computing optical flow.



Furthermore, depth information on moving objects is also improved. The en-
vironment for which the algorithm was modelled are scenes where most of the
movement is in the depth direction, such as highway traffic scenes. Therefore, the
lateral and vertical velocities are not modelled, so movement in these directions
are neglected. In these scenes, the lateral and vertical velocity limitation is not
a problem.

This paper is structured as follows: Section 2 specifies the outline of the al-
gorithm. Section 3 briefly introduces the concept of iconic representations for
Kalman filtering and explains the new Kalman model incorporating disparity
rate. Section 4 contains the algorithm in detail. Experimental results are pre-
sented in Section 5, covering two main stereo algorithms with the application
to the model presented in this paper and also comparing speed and distance
estimation improvements over the static stereo integration approach. Finally,
conclusions and further research areas are discussed in Section 6.

2  Outline of the Disparity Rate Algorithm

2.1 Definitions

The algorithm presented in this paper uses some common terminology in com-
puter vision. Here is a list of the nomenclature that is commonly used within
this paper (from [4]):

Stereo camera: a pair of cameras mounted on a rig viewing a similar image
plane, i.e. facing approximately the same direction. The camera system has
a base line b, focal length f, and the relative orientation between the cam-
eras, calculated by calibration. Stereo cameras are used as an input for the
algorithm presented in this paper (see Figure 1).

Rectification: is the transformation process used to project stereo images onto
an aligned image plane.

Image Coordinates: p = [u, v]" is a pixel position with u and v being the
image lateral and height coordinates respectively. Pixel position is calcu-
lated from real world coordinates using back projection to the image plane
p=f(W).

Disparity: the lateral pixel position difference d between rectified stereo images.
This is inversely proportional to depth.

Disparity Map: an image containing the disparity at every pixel position. Dif-
ferent stereo algorithms are used to obtain correct matches between stereo
pairs. An example of a disparity map is seen in Figure 3(b).

Real World Coordinates: W = [X | YV, Z]T, where X, Y and Z are the
world lateral position, height and depth respectively. The origin moves with
the camera system, and a right-hand-coordinate system is assumed. Real
world coordinates can be calculated using triangulation of the pixel position
and disparity W = f(p, d).

Ego-motion: the movement of a camera system between frames. This is repre-
sented by a translation vector T; and a rotation matrix Rj;.
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Ego-vehicle: the platform that the camera system is fixed to, i.e. the camera
system moves with the ego-vehicle. For the case of a forward moving vehicle,
the ego-motion is based on speed v (velocity in depth direction) and yaw
(rotation around the Y axis).

2.2 Disparity Rate Algorithm

The iconic representation of Kalman filtering [10], that the algorithm presented
in this paper is based on, still follows the basic iterative steps of a Kalman filter
[6] to reduce noise on a linear system. The two steps are predict and update.
The iconic representation applies the principles pixel-wise over an entire image.
Section 3.1 contains more detail.

The algorithm presented in this paper creates a “track” (a set of information
that needs to maintained together) for every pixel in a frame, and integrates this
information over time. The information that is being tracked is:

Pixel position: in image coordinates.

Disparity: of the pixel position.

Disparity rate: the change in disparity w.r.t. time.

Disparity variance: the mean square error of the tracked disparity, e.g. low
value = high likelihood.

Disparity rate variance: the mean square error of the tracked disparity.
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Fig. 1. Block diagram of the algorithm. Rectangles represent data and ellipses represent
processes.



Disparity covariance: the estimated correlation between disparity and dis-
parity rate.

Age: the number of iterations since the track was established.

No measurement count: the number of iterations a prediction has been made
without an update.

The tracks are initialised using the current disparity map. This map can be
calculated using any stereo algorithm, the requirement is having enough valid
stereo points calculated to obtain a valid measurement during the update pro-
cess. Obviously, different stereo algorithms will create differing results. Stereo
algorithms tested against the algorithm presented in this paper are shown in
Section 5.1. Initialisation parameters, that are supplied by the user, are also re-
quired to help initialise the tracks. The parameters supplied here are the initial
variances and disparity rate. This is explained in full detail in Section 4.1. For
the first iteration, the initialisation creates the current state (see Figure 1).

In the next iteration, the current state transitions to become the previous
state. The previous state is predicted using a combination of ego-motion and
the state transition matrix from the Kalman filter. In the case of a forward
moving ego-vehicle, in a static environment, objects will move toward the camera
(Kalman state transition matrix is the identity matrix). This is illustrated in
Figure 2. This approach was used in [1]. The algorithm, presented in this paper,
also uses disparity rate (with associated Kalman state transition matrix) to assist
the prediction. This is explained in Section 4.2.

The predicted tracks are then validated against a set of validation parameters,
such as: image region of interest, tracking age thresholds, and depth range of
interest. Also, predicted tracks can have the same pixel position. Due to the
iconic representation of the tracks, these points are integrated to combine the
differing predictions. The full validation rules are found in Section 4.3.
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Fig. 2. Figure (a) shows relative movement of a static object between frames, in image
coordinates, when the camera is moving forward. Figure (b) shows the real world birds-
eye view of the same movement, back projected into the image plane.



After the validation, the Kalman update is performed on all the tracks. The
measurement information that is used here is the current disparity map and cor-
responding variance. The variance for each disparity is supplied by the initiali-
sation parameters. In some situations, there is no valid disparity measurement
at the predicted pixel position. In these situations, the track is either deleted or
kept, depending on the age and no measurement count. Acception and rejection
criteria are covered in Section 4.4.

Finally, any pixels in the current disparity map, that are not being tracked,
are initialised and added to the current state. The current state can then be
used for subsequent processes, such as free-space calculations and leader vehicle
tracking.

The static stereo integration approach in [1] generated incorrect depth esti-
mates over time on moving objects, primarily the lead vehicle. The main issue
that the algorithm presented in this paper assists with, is improving the depth
estimation of forward moving objects. It also provides extra information that
was not available previously, pixel-wise disparity rate, which is used to calculate
speed in the depth direction. Using this information for subsequent processes is
outside the scope of this paper and constitutes further research.

The algorithm presented in this paper was tested using real images, recorded
from a stereo camera mounted in a car. The major ego-motion component is
therefore speed, which is essential for the disparity rate model to work. The
limitation is that lateral and vertical movements are not modelled, so can not
be detected. Other approaches have already been established to track this type
of movement, such as 6D-vision [3]. The advantage the disparity rate model has
over such techniques, is that dynamic information is generated more densely for
the same computation cost.

3 Kalman Filter Model

3.1 Iconic Representation for Kalman Filter

In [10] an iconic (pixel-based) representation of the Kalman filter is introduced.
Instead of using a Kalman filter to track flow on features, a filter is used to track
each pixel individually. Applying a traditional Kalman filter [6] to an entire image
would lead to a very large state vector, with a corresponding large covariance
matrix (i.e. the pixel position and disparity, for every pixel, would define the state
vector). The main assumption here is that every pixel is independent and there
is no relation to adjacent pixels. This allows a simplification of a Kalman filter
at each pixel, thus it leads to many small state vectors and covariance matrices,
which is computationally more efficient because of the matrix inversions involved
with the Kalman filter. The pixel position is estimated using known ego-motion
information, so is not included in the Kalman state. To find out the full details
of iconic representations, refer to [10].

The main error in triangulation is in the depth component [9]. This triangula-
tion error is reduced by using the ego-motion of the camera to predict flow, then



integrating the data over time (as presented in [1]). In this paper, the algorithm
is expanded by incorporating disparity rate into the Kalman filter.

3.2 Kalman Filter Model Incorporating Disparity Rate
An example of the general Kalman filter equations can be seen in [11], they are:

Prediction Equations:

x; =Ax;; and P; =AP, ;AT +Q (1)

Update Equations:
K = P;H” (HP;H” + R) ' 2)
xt=x; +K(z—H'x;) and P,=(I-KH")P; (3)

where x is the estimated state vector, P is the corresponding covariance matrix
of x, and Q is the system noise. K is the Kalman gain, z; is the measurement
vector, R is the measurement noise and H” is the measurement to state matrix.
A superscript “—” denotes prediction to be used in the update step. A subscript
t refers to the frame number (time). For the algorithm presented in this paper,
a Kalman filter is used inside the track to maintain disparity, disparity rate and
associated covariance matrix, represented by:

0’2 0'2 ;
X = (Z) and P = Qd d‘Qd (4)
Ta1d %d

d is the disparity and d is the disparity rate. afl represents the disparity variance,
03 represents disparity rate variance, and O’ZI j represents the covariance between
disparity and rate. Tracking of the pixel position is not directly controlled by
the Kalman filter, but uses a combination of the Kalman state and ego-motion

of the camera. This approach is discussed in Section 4.2. The state transition

matrix is simply as follows:
1 At
A= o7 ®

where At is time between frames t and (¢t — 1).
The measurements are taken directly from the current disparity map (see

Figure 1). Disparity rate is not measured directly. Therefore, H = [10]", and
both the measurement vector and noise become scalers; namely z for measure-
ment of disparity and R as the associated variance. The update equations are

then simplified as follows:
1 o5
K= [ P — %— (6)
oy + R 0d|d

xi=%x; +K (2 —d;y) and P,=I-K[10])P; (7)

The initial estimates for x and P need to be provided to start a track. These
will be discussed further in Section 4.1.



4 Disparity Rate Integration Algorithm in Detail

4.1 Initialisation of New Points

The only information available at the time of initialisation is the current mea-
sured disparity map: z; at every pixel. For every time frame, any point that has
a valid measurement and is not currently being tracked, is initialised. The no
measurement count is set to zero, and the pixel position is the initial location of
the pixel. The initialisation for the Kalman filter is as follows:

x——<§> and P——(f;) (8)

where R, € and (8 are values set by the Initialisation Parameters outlined in Fig-
ure 1, which are supplied by the user. Generally speaking, R should be between
0-1; disparity error should not be larger than 1 pixel and will not be “perfect”.
¢ should be a value close to zero, representing little correlation between the dis-
parity and disparity rate. 8 will be a large value to represent a high uncertainty
of the initial disparity rate, as there is no initial measurement. With the large
variance set for disparity rate, the Kalman filter will move closer to the “real”
value as it updates the “wrong” predictions.

4.2 Prediction

Prediction of the disparity, disparity rate and covariance matrix are mentioned
in Section 3. Therefore, the only prediction required is the current pixel position.
The prediction part of Figure 1 shows two inputs for prediction, which are the
previous state and ego-motion of the camera.

First, to explain the prediction more simply, a static camera is assumed (i.e.
no ego-motion knowledge is required); so the only input is the previous state.
This results in the following equations for pixel position prediction:

_ X vl
v = |Gt D ©
Xi=X41=Xo and Y=Y, 1=Y) (10)
bf

Zy =Ty 1+ Zy 1 At = (11)

dy_q + dy_1 At
Substituting Equations (10) and (11) into Equation (9), and assuming that the
disparity prediction is d; = d;—1 +d;—1At, provides the current pixel estimation

_dy T
pi = L [Xo, ¥ (12
With the pixel prediction formulation above, the prediction model is ex-
panded to account for ego-motion between frames. The primary assumption



here is that the ego-motion of the camera is known and noise-free. The world
coordinates are calculated using standard triangulation methods from [4]. For a
full ego-motion model, the equation is as follows:

W, =RW; + T, (13)

where W, is calculated using triangulation W; = f(p; ). The world coordi-
nate prediction W, is then back projected, to yield the final pixel prediction
p: = f(Wy). For the case of a camera that is moving forward (i.e. a car move-
ment system presented in [3]), speed and yaw are the only factors to obtain depth
and lateral movement (vertical movement is zero). This results in the following
variables:

cos(1p) 0 —sin(v)) v At (1 cos(1))
R; = 0 1 0 and T, = 0 (14)
sin(¢)) 0 cos(v) ¥ —sin(1)

where speed v and yaw 1) are measured between frames ¢ and (¢ — 1). All other
ego-motion components are neglected.

4.3 Validation

The prediction step in the section above is performed for every track individu-
ally, with no correlation between tracks. This leads to a need for validating the
prediction results. The validation checks, currently in the model, are:

1. Check to see if the pixel position is still in the region of interest. If not, then
remove track.

2. Check to see if the disparity is within the depth-range of interest. If it is
below or above the threshold, then remove the track.

3. Check if there two or more tracks occupying the same pixel position. If
so, integrate the tracks at this pixel position using the general weighting
equations as follows:

-1
P = (Z P:1> (15)

ieN
Xint = Pint <Z PZ-_IXz) (16)
iEN

where N is the set of tracks occupying the same pixel position. This will give
a stronger weighting to tracks with a lower variance (i.e. higher likelihood
that the estimate is correct).

4.4 Update

From Figure 1, the input to the update process is the current measured dis-
parity map and associated variance (supplied by initialisation parameters). The



disparity measurements are obtained by applying a stereo algorithm to a rec-
tified stereo pair; see Section 5.1 for more detail. The Kalman update process,
explained in Section 3.2, is performed for every currently tracked pixel. As above,
R is the variance and z; is the current measurement at pixel position p. How-
ever, there are several reasons why there will be no measurement (or an incorrect
measurement) at the predicted pixel position:

— The stereo algorithm being used may not generate dense enough stereo
matches. Therefore, no disparity information at certain pixel locations.

— The model is using a noisy approach to initialise disparity rate. A recently
created track will have a bad disparity rate prediction, causing the predicted
pixel position to be incorrect. This will increase the likelihood that the pre-
diction will land on a pixel without measurement.

— Noisy measured ego-motion parameters or ego-motion components not mod-
elled (such as tilt or roll), may induce an incorrect predicted pixel position.

If the above issues were not handled correctly, then the tracks created would
contain a lot of noise. The decision on how to handle these situations is as follows:

1. Check to see if there is a measurement in the neighbourhood (controlled by

a search window threshold) of the predicted pixel position.
(a) Measurement at exact position; then use this disparity measurement

with the corresponding disparity.
(b) Measurement at neighboring position; then use this disparity measure-
ment but use the disparity measurement with a proportionally higher

variance, depending on the distance from the exact position prediction.
2. If there is a valid disparity measurement found; perform a Mahalanobis 3-
sigma test [7]:
(a) Pass: apply the Kalman update and reset the no measurement count.
(b) Fail: treat as if there is no valid measurement found.
3. If there is no valid measurement, the variables age and no measurement

count are used:
(a) Check the age of the Kalman filter. If it is below a certain age (controlled

by a threshold), then remove the track. This prevents young noisy tracks
effecting the over-all results.

(b) If the track is old enough (controlled by threshold above): do not update
the track, but keep the predicted track as the truth. This will increase the
no measurement count, with the hope there will be a valid measurement
in the next few frames.

(c) If the track is over the no measurement count maximum (controlled by
a threshold), then remove the track. This prevents tracks from being
predicted forever without a valid measurement.

5 Experimental results

5.1 Stereo Algorithms

The algorithm presented in this paper requires a disparity image as input, cre-
ated by a stereo algorithm. The algorithm has been tested with several stereo
algorithms.
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(b) SGM Stereo

(c) SGM Speed Estimate (d) Correlation Pyramid Speed Estimate

Fig. 3. Figure (b): red represents close points and green represents distant points.
Figures (c) and (d): green represents static points (w.r.t. the ground), blue represents
positive movement and red represents negative movement, both in the depth direction.
Figure (d) shows a less noisy estimation when using Correlation Pyramid Stereo.

Correlation Stereo: the algorithm presented in this paper was tested using a
stereo feature based correlation scheme [2]. Correlation Pyramid Stereo “throws
away” badly established feature correlations, only using the best features for
disparity calculations. Using this approach lead to less noisy results, as is seen
in the comparison of Figure 3(c) and 3(d). All points on the lead vehicle show a
positive movement in the depth direction (blue) and most static points (road and
barrier) correctly marked as green. Furthermore, oncoming traffic does create
some negative movement estimations (red), although this information is rather
noisy. The disparity information provided is not as dense as the SGM stereo
method below.

Semi-Global-Matching: another stereo algorithm tested was Hirschmiiller’s
Semi-Global-Matching (SGM) [5], an efficient “fast” (compared to other dense
algorithms) dense stereo algorithm. The SGM approach resulted in a lot of er-
roneous disparity calculations in low textured areas. This is seen in Figure 3(b),
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where there are clear mismatches around the number plate of the lead vehicle
and the bank on the right-hand-side. SGM still worked as an input for the al-
gorithm presented in this paper, but created lots of noise, propagated from the
integration of erroneous disparities. If there is a pixel prediction from a correct
match in one frame, to a low textured area in the next frame, a mismatch can
easily be found (due to the dense nature of the stereo algorithm). This will result
in a large change in disparity (disparity rate), thus it creates noise around the
low textured area. This is seen in Figure 3(c), where there is a lot of noise behind
the lead vehicle and also on the right-hand-side bank. SGM is also a lot more
computationally expensive compared to Correlation Pyramid (factor of 10); and
can not yet be run in real-time.

5.2 Speed and Distance Estimation Results

The algorithm presented in this paper was tested on real images recorded from
a stereo camera mounted in a moving vehicle. The speed and yaw of the ego-
vehicle were measured (but possibly noisy), as required for the model. To test the
algorithm, all the tracks on the lead vehicle were measured over time. For each
frame, outlying points were eliminated using the 3-sigma Mahalanobis distance
test, then the weighted average was calculated using Equations (15) and (16),
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Fig. 4. Figure (a) shows the comparison between radar and the disparity rate model.
Figure (b) compares distance estimates using; radar, the static stereo integration and
the Disparity Rate model. More information can be found in the text.
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with N being the set of tracks located on the lead vehicle. The average result
was plotted over time. The ego-vehicle also had a leader vehicle tracking radar,
which measures speed and distance. The radar measurements were used as an
approximate “ground truth” for comparison.

An example of one scene where this approach was tested can be seen in
Figure 4. In this scene, a van was tracked over time (see Figure 3 for lead vehicle
scene). The algorithm provided reasonable speed estimates, as is seen by an in
Figure 4(a). Between frames 200-275, there is an oscillation, this is due to a
large lateral movement in the lead vehicle (going around a corner) which is not
modelled. Furthermore, the distance estimate on the leader vehicle are improved,
compared to the static stereo integration approach (outlined in [1]). The distance
estimation improvement results from no longer assuming the leader vehicle as
static. This is seen by the improved results in Figure 4(b) which clearly shows
the estimation using the disparity rate model is more accurate than the static
stereo integration approach, when comparing against the radar measurements
(ground truth). In both figures, the radar data is lost around frame 275, but the
stereo integration still delivers estimations.

Similar results can be seen in Figure 5 during a wet scene. In this scene, a car
is tracked over time. The algorithm still provides meaningful results, even with
the issues caused by wet weather (e.g. windscreen wiper occlusion, reflection of
the road and poor visibility).

(a) Original Image (b) Estimated Speed
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(c) Results

Fig. 5. A wet traffic scene with a car as the leading vehicle.
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Fig. 6. Occupancy grids: Bright locations indicate a high likelihood that an obstacle
occupies the location. Dark regions indicate a low likelihood that an obstacle occupies
the region. The outline refers to the lead vehicle highlighted in Figure 3(a).

There is also no loss in information when computing occupancy grids, the
comparison between the static approach and disparity rate model is seen in
Figure 6. The occupancy grids show the same time frame number using the
two models (also the same frame number as Figure 3). The improved depth
information is highlighted showing a more accurate pixel cloud where the lead
vehicle is located.

The algorithm runs in real-time and takes only 5-10% more computational
time than using the static stereo integration approach. To get the results ob-
tained above, the algorithm was running at 20 Hz on an Intel Yonah Core Duo
T2400.

6 Conclusions and Further Work

The approach outlined by this paper has shown that using a disparity rate model
provides extra information, over static stereo integration, when applied to scenes
with movement in the depth direction. Not only are reasonable speed results
obtained, but the distance estimations are also improved. If this information is
used correctly, better occupancy grids will be created and leader vehicle tracking
will be improved. Further work that still needs to be included in the model and
is planned:

— Using the ego-motion in the initialisation scheme as another hypothesis for
speed prediction. This approach aims to create quicker convergence on mov-
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ing objects. The assumption being that a moving object’s velocity will be
closer to that of the ego-vehicle’s velocity, rather than the static ground. A
negative ego-motion could also be included as another hypothesis, to allow
convergence for oncoming traffic [3].

Use the disparity rate (speed) estimation in some follow-on processes (e.g.
objective function for free-space calculation).

There is a problem with occlusion of an area in one frame, which is not
occluded in the next. This causes major changes in the disparity at those
pixel positions, giving incorrect disparity rate estimations, which needs to
be modeled and compensated.
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